Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T10:47:54.707Z Has data issue: false hasContentIssue false

Fluorescence loss of commercial aqueous quantum dots during preparation for bioimaging

Published online by Cambridge University Press:  29 April 2019

Kil Ho Lee
Affiliation:
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, USA
Thomas Porter
Affiliation:
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, USA
Jessica O. Winter*
Affiliation:
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, USA Department of Biomedical Engineering, The Ohio State University, 151 W. Woodruff Ave. Columbus, OH 43210, USA
*
Address all correspondence to Jessica O. Winter at [email protected]
Get access

Abstract

Quantum dots (QDs) are increasingly employed in biologic imaging applications; however, anecdotal reports suggest difficulties in QD bioconjugation. Further, the stability of commercial QDs during bioconjugation has not been systematically evaluated. Thus, we examined fluorescence losses resulting from aggregation and declining photoluminescence quantum yield (QY) for commercial CdSe/ZnS QD products from four different vendors. QDs were most stable in the aqueous media in which they were supplied. The largest QY declines were observed during centrifugal filtration, whereas the largest declines in colloidal stability occurred in 2-(N-morpholino)ethanesulfonic acid (MES) buffer. These results enable optimization of bioconjugation protocols.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors have contributed equally to this work.

References

1.Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).Google Scholar
2.Chan, W.C. and Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016 (1998).Google Scholar
3.van Sark, W.G., Frederix, P.L.T.M., Bol, A.A., Gerritsen, H.C., and Meijerink, A.: Blueing, bleaching, and blinking of single CdSe/ZnS quantum dots. ChemPhysChem 3, 871 (2002).Google Scholar
4.Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N.F., Peale, F., and Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41 (2003).Google Scholar
5.Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., and Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298, 1759 (2002).Google Scholar
6.Shiohara, A., Hoshino, A., Hanaki, K., Suzuki, K., and Yamamoto, K.: On the cyto-toxicity caused by quantum dots. Microbiol. Immunol. 48, 669 (2004).Google Scholar
7.Waalkes, M.P.: Cadmium carcinogenesis. Mutat. Res. 533, 107 (2003).Google Scholar
8.Ye, L., Yong, K.-T., Liu, L., Roy, I., Hu, R., Zhu, J., Cai, H., Law, W.-C., Liu, J., Wang, K., Liu, J., Liu, Y., Hu, Y., Zhang, X., Swihart, M.T., and Prasad, P.N.: A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nat Nano 7, 453 (2012).Google Scholar
9.Grim, J.Q., Manna, L., and Moreels, I.: A sustainable future for photonic colloidal nanocrystals. Chem. Soc. Rev. 44, 5897 (2015).Google Scholar
10.Pradhan, N. and Peng, X.G.: Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: Control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 129, 3339 (2007).Google Scholar
11.Banerjee, A., Grazon, C., Nadal, B., Pons, T., Krishnan, Y., and Dubertret, B.: Fast, efficient, and stable conjugation of multiple DNA strands on Colloidal Quantum Dots. Bioconjug. Chem. 26, 1582 (2015).Google Scholar
12.Aldana, J., Wang, Y.A., and Peng, X.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).Google Scholar
13.Zhang, Y., Chen, Y.S., Westerhoff, P., and Crittenden, J.C.: Stability and removal of water soluble CdTe quantum dots in water. Environ. Sci. Technol. 42, 321 (2008).Google Scholar
14.Anderson, N.C., Hendricks, M.P., Choi, J.J., and Owen, J.S.: Ligand exchange and the stoichiometry of metal Chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536 (2013).Google Scholar
15.Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435 (2005).Google Scholar
16.Hermanson, G.T.: Bioconjugate Techniques (Academic Press, Amsterdam, 2013).Google Scholar
17.Hermanson, G.T.: Bioconjugate Techniques (Academic Press, San Diego, 1996).Google Scholar
18.Kubin, R.F. and Fletcher, A.N.: Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27, 455 (1982).Google Scholar
19.Velapoldi, R.A.: Considerations on organic compounds in solution and inorganic ions in glasses as fluorescent standard reference materials. National Bureau of Standards Special Publication 378, 231 (1973).Google Scholar
20.Wu, Y., Campos, S.K., Lopez, G.P., Ozbun, M.A., Sklar, L.A., and Buranda, T.: The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy. Anal. Biochem. 364, 180 (2007).Google Scholar
21.Gaigalas, A.K. and Wang, L.: Measurement of the fluorescence Quantum Yield using a spectrometer with an Integrating Sphere Detector. J. Res. Natl. Inst. Stand. Technol. 113, 17 (2008).Google Scholar
22.Thomas, J.D.: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging. Toxicol. Pathol. 36, 112 (2008).Google Scholar
23.Winter, J.O., Liu, T.Y., Korgel, B.A., and Schmidt, C.E.: Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells. Adv. Mater. 13, 1673 (2001).Google Scholar
24.Pfeiffer, C., Rehbock, C., Hühn, D., Carrillo-Carrion, C., de Aberasturi, D.J., Merk, V., Barcikowski, S., and Parak, W.J.: Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J. Royal Soc. Interface 11, 20130931 (2014).Google Scholar
25.Moore, T.L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., and Petri-Fink, A.: Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. Chem. Soc. Rev. 44, 6287 (2015).Google Scholar
26.Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).Google Scholar
27.Wang, F., Tang, R., and Buhro, W.E.: The trouble with TOPO; identification of adventitious impurities beneficial to the growth of Cadmium Selenide quantum dots, rods, and wires. Nano Lett. 8, 3521 (2008).Google Scholar
28.van Sark, W.G.J.H.M., Frederix, P.L.T.M., Van den Heuvel, D.J., Gerritsen, H.C., Bol, A.A., van Lingen, J.N.J., de Mello Donegá, C., and Meijerink, A.: Photooxidation and photobleaching of single CdSe/ZnS quantum dots probed by room-temperature time-resolved spectroscopy. J. Phys. Chem. B 105, 8281 (2001).Google Scholar
29.RodriguezViejo, J., Jensen, K.F., Mattoussi, H., Michel, J., Dabbousi, B.O., and Bawendi, M.G.: Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites. Appl. Phys. Lett. 70, 2132 (1997).Google Scholar
Supplementary material: File

Lee et al. supplementary material

Figures S1-S5

Download Lee et al. supplementary material(File)
File 978 KB