Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T10:46:39.291Z Has data issue: false hasContentIssue false

First-principles study of metal-induced gap states in metal/oxide interfaces and their relation with the complex band structure

Published online by Cambridge University Press:  08 November 2013

Pablo Aguado-Puente
Affiliation:
Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Avenida de los Castros s/n, 39005 Santander, Spain
Javier Junquera*
Affiliation:
Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Cantabria Campus Internacional, Avenida de los Castros s/n, 39005 Santander, Spain
*
Address all correspondence to Javier Junquera at[email protected]
Get access

Abstract

We develop a simple model to compute the energy-dependent decay factors of metal-induced gap states in metal/insulator interfaces considering the collective behavior of all the bulk complex bands in the gap of the insulator. The agreement between the penetration length obtained from the model (considering only bulk properties) and full first-principles simulations of the interface (including explicitly the interfaces) is good. The influence of the electrodes and the polarization of the insulator are analyzed. The method simplifies the process of screening materials to be used in Schootky barriers or in the design of giant tunneling electroresistance and magnetoresistance devices.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zubko, P., Gariglio, S., Gabay, M., Ghosez, Ph., and Triscone, J.-M.: Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141 (2011).Google Scholar
2.Heine, V.: Theory of surface states. Phys. Rev. 138, A1689 (1965).Google Scholar
3.Tung, R.T.: Recent advances in Schottky barrier concepts. Mater. Sci. Eng. Rep. 35, 1 (2001).Google Scholar
4.Demkov, A.A., Fonseca, L.R.C., Verret, E., Tomfohr, J., and Sankey, O.F.: Complex band structure and the band alignment problem at the Si-high-k dielectric interface. Phys. Rev. B 71, 195306 (2005).Google Scholar
5.Ye. Zhuravlev, M., Sabirianov, R.F., Jaswal, S.S., and Tsymbal, E.Y.: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005).Google Scholar
6.Tsymbal, E.Y. and Kohlstedt, H.: Tunneling across a ferroelectric. Science 313, 181 (2006).CrossRefGoogle ScholarPubMed
7.Gruverman, A., Wu, D., Lu, H., Wang, Y., Jang, H.W., Folkman, C.M., Ye. Zhuravlev, M., Felker, D., Rzchowski, M., Eom, C.-B., and Tsymbal, E.Y.: Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. Nano Lett. 9, 3539 (2009).Google Scholar
8.Maksymovych, P., Jesse, S., Yu, P., Ramesh, R., Baddorf, A.P., and Kalinin, S.V.: Polarization control of electron tunneling into ferroelectric states. Science 324, 1421 (2009).Google Scholar
9.García, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthélémy, A., and Bibes, M.: Giant tunneling electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81 (2009).Google Scholar
10.Burton, J.D. and Tsymbal, E.Y.: Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface. Phys. Rev. Lett. 106, 157203 (2011).Google Scholar
11.Velev, J.P., Belashchenko, K.D., Stewart, D.A., van Schilfgaarde, M., Jaswal, S.S., and Tsymbal, E.Y.: Negative spin polarization and large tunneling magnetoresistance in epitaxial Co/SrTiO3/Co magnetic tunnel junctions. Phys. Rev. Lett. 95, 216601 (2005).Google Scholar
12.García, V., Bibes, M., Bocher, L., Valencia, S., Kronast, F., Crassous, A., Moya, X., Enouz-Vedrenne, S., Gloter, A., Imhoff, D., Deranlot, C., Mathur, N.D., Fusil, S., Bouzehouane, K., Barthélémy, A.: Ferroelectric control of spin polarization. Science 327, 1106 (2010).CrossRefGoogle ScholarPubMed
13.Caffrey, N.M., Archer, T., Rungger, I., and Sanvito, S.: Coexistence of giant tunneling electroresistance and magnetoresistance in an all-oxide composite magnetic tunnel junction. Phys. Rev. Lett. 109, 226803 (2012).Google Scholar
14.Zangwill, A.: Physics at Surfaces (Cambridge University Press, Cambridge, England, 1988).Google Scholar
15.Bibes, M., Villegas, J.E., and Barthélémy, A.: Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60, 5 (2011).Google Scholar
16.Janicka, K., Velev, J.P., and Tsymbal, E.Y.: Quantum nature of two-dimensional electron gas confinement at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 102, 106803 (2009).CrossRefGoogle ScholarPubMed
17.Velev, J.P., Duan, C.G., Belashchenko, K.D., Jaswal, S.S., and Tsymbal, E.Y.: Effect of ferroelectricity on electron transport in Pt/BaTiO3/Pt tunnel junctions. Phys. Rev. Lett. 98, 137201 (2007).CrossRefGoogle ScholarPubMed
18.Tomfohr, J.K. and Sankey, O.F.: Complex band structure, decay lengths, and Fermi level alignment in simple molecular electronic systems. Phys. Rev. B 65, 245105 (2002).CrossRefGoogle Scholar
19.Soler, J.M., Artacho, A., Gale, J.D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D.: The Siesta method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
20.Gianozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M.: Quantum Espresso: a modular open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).Google Scholar
21.Smogunov, A., Dal Corso, A., and Tosatti, E.: Ballistic conduction of magnetic Co and Ni nanowires with ultrasoft pseudopotentials. Phys. Rev. B 70, 045417 (2004).Google Scholar
22.Chang, Y.-C.: Complex band structures of zinc-blende materials. Phys. Rev. B 25, 605 (1982).CrossRefGoogle Scholar
23.Hinsche, N.F., Fechner, M., Bose, P., Ostanin, S., Henk, J., Mertig, I., and Zahn, P.: Strong influence of complex band structure on tunneling electroresistance: a combined model and ab initio study. Phys. Rev. B 82, 214110 (2010).Google Scholar
24.Wortmann, D. and Blügel, S.: Influence of the electronic structure on tunneling through ferroelectric insulators: applications to BaTiO3 and PbTiO3. Phys. Rev. B 83, 155114 (2011).Google Scholar
25.Mavropoulos, Ph., Papanikolau, N., and Dederichs, P.H.: Complex band structure and tunneling through ferromagnet/insulator/ferromagnet junctions. Phys. Rev. Lett. 85, 1088 (2000).Google Scholar
26.Butler, W.H., Zhang, X.-G., Schulthess, T.C., and MacLaren, J.M.: Spin-dependent tunneling conductance of Fe/MgO/Fe sandwiches. Phys. Rev. B 63, 054416 (2001).CrossRefGoogle Scholar
27.Stengel, M., Aguado-Puente, P., Spaldin, N.A., and Junquera, J.: Band alignment at metal/ferroelectric interfaces: insights and artifacts from first-principles. Phys. Rev. B 83, 235112 (2011).Google Scholar
28.Caffrey, N.M., Archer, T., Rungger, I., and Sanvito, S.: Prediction of large bias-dependent magnetoresistance in all-oxide magnetic tunnel junctions with a ferroelectric barrier. Phys. Rev. B 83, 125409 (2011).Google Scholar
29.Velev, J.P., Duan, C.-G., Burton, J.D., Smogunov, A., Niranjan, M.K., Tosatti, E., Jaswal, S.S., and Tsymbal, E.Y.: Magnetic tunnel junctions with ferroelectric barriers: prediction of four resistance states from first principles. Nano Lett. 9, 427 (2009).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Aguado-Puente Supplementary Materials

Supplementary Materials

Download Aguado-Puente Supplementary Materials(PDF)
PDF 8.4 MB