Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-20T10:48:07.595Z Has data issue: false hasContentIssue false

Fabricating high refractive index titanium dioxide film using electron beam evaporation for all-dielectric metasurfaces

Published online by Cambridge University Press:  29 March 2016

Ning An
Affiliation:
Integrated Nanoscience Laboratory, Department of Material Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China Integrated Nanoscience Laboratory, Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
Kaiyang Wang
Affiliation:
Integrated Nanoscience Laboratory, Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
Haohan Wei
Affiliation:
Integrated Nanoscience Laboratory, Department of Material Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
Qinghai Song*
Affiliation:
Integrated Nanoscience Laboratory, Department of Electronic and Information Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
Shumin Xiao*
Affiliation:
Integrated Nanoscience Laboratory, Department of Material Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
*
Address all correspondence to Qinghai Song and Shumin Xiao at [email protected], [email protected]
Address all correspondence to Qinghai Song and Shumin Xiao at [email protected], [email protected]
Get access

Abstract

Transparent high refractive index materials are of the central importance for the development of metasurface in visible range. Titanium dioxide (TiO2) has been considered as a perfect candidate due to its wide band gap and high refractive index. However, till now, it is still quite challenging to fabricate high-quality TiO2 films with high refractive indices and low losses. Here we demonstrate the fabrication of high-quality TiO2 film using an electron-beam evaporation method. We show that the post-annealing conditions play key roles in the microstructure crystallographic and the optical refractive index of the TiO2 films. A predominately oriented TiO2 film has been achieved by annealing at 700 °C in oxygen ambient. The refractive index is as high as 2.4, and the corresponding loss is negligible at 632 nm. Further studies on dielectric antennas show that our TiO2 film can be an ideal platform to fabricate metasurface in visible frequency range. We believe that our research will be important for the advances of all-dielectric metasurfaces.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yu, N. and Capasso, F.: Flat optics with designer metasurfaces. Nat. Mater. 13, 139150 (2014).Google Scholar
2. Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Planar photonics with metasurfaces. Science 339, 1232009 (2013).Google Scholar
3. Yu, N., Genevet, P., Kats, M.A., Aieta, F., Tetienne, J.P., Capasso, F., and Gaburro, Z.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333337 (2011).CrossRefGoogle ScholarPubMed
4. Ni, X., Emani, N.K., Kildishev, A.V., Boltasseva, A., and Shalaev, V.M.: Broadband light bending with plasmonic nanoantennas. Science 335, 427427 (2012).CrossRefGoogle ScholarPubMed
5. Sun, S., He, Q., Xiao, S., Xu, Q., Li, X., and Zhou, L.: Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11, 426431 (2012).Google Scholar
6. Larouche, S., Tsai, Y.J., Tyler, T., Jokerst, N.M., and Smith, D.R.: Infrared metamaterial phase holograms. Nat. Mater. 11, 450454 (2012).Google Scholar
7. Huang, L., Chen, X., Mühlenbernd, H., Zhang, H., Chen, S., Bai, B., and Zhang, S.: Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).CrossRefGoogle Scholar
8. Aieta, F., Genevet, P., Kats, M.A., Yu, N., Blanchard, R., Gaburro, Z., and Capasso, F.: Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 49324936 (2012).Google Scholar
9. Pors, A., Nielsen, M.G., Eriksen, R.L., and Bozhevolnyi, S.I.: Broadband focusing flat mirrors based on plasmonic gradient metasurfaces. Nano Lett. 13, 829834 (2013).CrossRefGoogle ScholarPubMed
10. Aieta, F., Kats, M.A., Genevet, P., and Capasso, F.: Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 13421345 (2015).CrossRefGoogle ScholarPubMed
11. Yang, Y., Wang, W., Moitra, P., Kravchenko, I.I., Briggs, D.P., and Valentine, J.: Dielectric meta-reflect array for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 13941399 (2014).CrossRefGoogle Scholar
12. Decker, M., Staude, I., Falkner, M., Dominguez, J., Neshev, D.N., Brener, I., and Kivshar, Y.S.: High efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813820 (2015).Google Scholar
13. Lin, D., Fan, P., Hasman, E., and Brongersma, M.L.: Dielectric gradient metasurface optical elements. Science 345, 298302 (2014).Google Scholar
14. Yang, Y., Wang, W., and Moitra, P.: Dielectric meta-Reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett. 14, 13941399 (2014).Google Scholar
15. Moitra, P., Slovick, B.A., Li, W., Kravchencko, I.I., Briggs, D.P., Krishnamurthy, S., and Valentine, J.: Large-scale all-dielectric Metamaterial perfect reflectors. ACS Photonics 2, 692698 (2015).Google Scholar
16. Li, J., Shah, C.M., Withayachumnan, W., Ung, B.S.Y., Mitchell, A., Sriram, S., and Abbott, D.: Mechanically tunable terahertz metamaterials. Appl. Phys. Lett. 102, 121101–121101-4 (2013).Google Scholar
17. Ou, J.Y., Plum, E., Jiang, L., and Zheludev, N.I.: Reconfigurable photonic metamaterials. Nano Lett. 11, 21422144 (2011).Google Scholar
18. Yao, J.K., Huang, H.L., and Ma, J.Y.: High refractive index TiO2 film deposited by electron beam evaporation. Surf. Eng. 25, 257260 (2009).Google Scholar
19. Sonawane, R.S., Hegdeand, S.G., and Dongare, M.K.: Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating. Mater. Chem. Phys. 77, 744750 (2003).CrossRefGoogle Scholar
20. Löbl, P., Huppertz, M., and Merge, D.: Nucleation and growth in TiO2 films prepared by sputtering and evaporation[J]. Thin Solid Films 251, 7279 (1994).Google Scholar
21. Suda, Y., Kawasaki, H., and Ueda, T.: Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Films 453, 162166 (2004).Google Scholar
22. Sarakinos, K., Alami, J., Klever, C., and Wuttig, M.: Growth of TiOx films by high power pulsed magnetron sputtering from a compound TiO1.8 target. Rev. Adv. Mater. 15, 4448 (2007).Google Scholar
23. Kotake, H., Jiaand, J., and Nakamura, S.: Tailoring the crystal structure of TiO2 thin films from the anatase to rutile phase. J. Vac. Sci. Technol. A 33, 041505 (2015).Google Scholar
24. Bendavid, A., Martin, P.J., and Jamting, Å.: Structural and optical properties of titanium oxide thin films deposited by filtered arc deposition. Thin Solid Films 355, 611 (1999).Google Scholar
25. Sun, S., Yi, N., Yao, W., Song, Q., and Xiao, S.: Enhanced second-harmonic generation from nonlinear optical metamagnetics. Opt. Express 22, 2661326620 (2015).Google Scholar