Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T10:46:11.991Z Has data issue: false hasContentIssue false

Equilibrium atomic conformation of Pt2Ru3 nanoparticles under gas atmosphere of CO/H2 investigated by density functional theory and Monte Carlo simulation

Published online by Cambridge University Press:  05 April 2018

Md Khorshed Alam
Affiliation:
Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
Hiromitsu Takaba*
Affiliation:
Department of Environmental Chemistry and Chemical Engineering, School of Advanced Engineering, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015, Japan
*
Address all correspondence to Hiromitsu Takaba at [email protected]
Get access

Abstract

We have investigated the equilibrium conformation of Pt2Ru3 nanoparticles in the presence of H2 and CO mixture gas using density functional theory (DFT) and Monte Carlo (MC) simulation. A multiple linear regression equation was prepared using DFT results to calculate adsorption energy from the structural descriptors. Using the regression equation, MC simulations were employed to elucidate the equilibrated conformation of Pt2Ru3 particles at a finite temperature of H2/CO where CO concentration in the range 100–500 ppm. MC results indicate that CO/H2 coadsorption induced the rearrangement of alloying atoms and Pt/Ru ratio exposed to the surface decreases with the increase of CO concentration.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Department of Physics, University of Barisal, Kornokathi, Barisal 8200, Bangladesh.

References

1.Götz, M. and Wendt, H.: Binary and ternary anode catalyst formulations including elements W, Sn and Mo for PEMFs operated on methanol and reformate. Electrochim. Acta 43, 3637 (1998).Google Scholar
2.Lemons, R.A.: Fuel cells for transportation. J. Power Sources 29, 251 (1990).CrossRefGoogle Scholar
3.Nørskov, J.K., Bligaard, T., Logadottir, A., Bahn, S., Hansen, L.B., Bollinger, M., Bengaard, H., Hammer, B., Sljivancanin, Z., and Mavrikakis, M.: Universality in heterogeneous catalysis. J. Catal. 209, 275 (2002).Google Scholar
4.Lucci, F.R., Darby, M.T., Mattera, F.G.M.F.G., Ivimey, C.J., Therrien, A.J., Michaelides, A., Stamatakis, M., and Sykes, E.C.H.: Controlling hydrogen activation, spillover, and desorption with Pd-Au single-atom alloys. J. Phys. Chem. Lett. 7, 480 (2016).Google Scholar
5.Gasteiger, H.A., Markovic, N.M. Jr., Ross, P.N., and Cairns, E.J.: Carbon monoxide electro-oxidation on well-characterized platinum-ruthenium alloys. J. Phys. Chem. 98, 617 (1994).Google Scholar
6.Rolison, D. R., Hagans, P.L., Swider, K.E., and Long, J.W.: Role of hydrous ruthenium oxide in Pt − Ru direct methanol fuel cell anode electro-catalysts: the importance of mixed electron/proton conductivity. Langmuir 15, 774 (1999).Google Scholar
7.Ge, Q., Desai, S., Neurock, M., and Kourtakis, K.: CO Adsorption on Pt-Ru surface alloys and on the surface of Pt-Ru bulk alloy. J. Phys. Chem. B 105, 9533 (2001).CrossRefGoogle Scholar
8.Somorjai, G.A. and Borodko, Y.G.: Research in nanosciences-Great opportunity for catalysis science. Catal. Lett. 76, 1 (2001).CrossRefGoogle Scholar
9.Sinfelt, J.H.: Catalysis by alloys and bimetallic cluster. Acc. Chem. Res. 10, 15 (1977).CrossRefGoogle Scholar
10.Sinfelt, J.H.: Structure of metal catalysts, Rev. Mod. Phys. 51, 569 (1979).Google Scholar
11.Campbell, C.T.: Bimetallic surface chemistry. Annu. Rev. Phys. Chem. 41, 775 (1990).Google Scholar
12.Gong, X.Q., Liu, Z.P., Raval, R., and Hu, P.: A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J. Am. Chem. Soc. 126, 8 (2004).CrossRefGoogle ScholarPubMed
13.Campbell, C.T., Ertl, G., Kuipers, H., and Segner, J.: A molecular beam study of the catalytic oxidation of CO on a Pt (111) surface. J. Chem. Phys. 73, 5862 (1980).CrossRefGoogle Scholar
14.Xu, M., Liu, J., and Zaera, F.: Kinetic evidence for the dependence of surface reaction rates on the distribution of reactants on the surface. J. Chem. Phys. 104, 8825 (1996).Google Scholar
15.Narayanasamy, J. and Anderson, A.B.: Mechanism for the electro-oxidation of carbon monoxide on platinum by H2O. Density functional theory calculation. J. Electroanal. Chem. 35, 554 (2003).Google Scholar
16.de Mongeot, F.B., Scherer, M., Gleich, B., Kopatzki, E., and Behm, R.J.: CO adsorption and oxidation on bimetallic Pt/Ru(0001) surfaces- a combined STM and TPD/TPR study. Surf. Sci. 411, 249 (1998).Google Scholar
17.Yajima, T., Uchida, H., and Watanabe, M.: In situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed co at Pt_Ru alloy. J. Phys. Chem. B 108, 2654 (2004).CrossRefGoogle Scholar
18.Koper, M.T.M., and Shubina, T.E., and van Santen, R.A.: Periodic density functional study of CO and OH adsorption on Pt-Ru alloy surfaces: implications for CO tolerant fuel cell catalysts. J. Phys. Chem. B 106, 686 (2002).CrossRefGoogle Scholar
19.Gong, X.-Q., Hu, P., and Raval, R.: The catalytic role of water in CO oxidation. J. Chem. Phys. 119, 6324 (2003).Google Scholar
20.Dunietz, B., Markovic, N.M., Ross, P.N., and Head-Gordon, M.: Initiation of electro-oxidation of CO on Pt based electrodes at full coverage conditions simulated by Ab initio electronic structure calculations. J. Chem. Phys. 108, 9888 (2004).Google Scholar
21.Shimodaira, Y., Tanaka, T., Miura, T., Kudo, A., and Kobayashi, H.: Density functional theory study of anode reactions on Pt-based alloy electrodes. J. Phys. Chem. C 111, 272 (2007).Google Scholar
22.Koper, M.T.M. and van Santen, R.A.: Interaction of H, O and OH with metal surfaces. J. Electroanal. Chem. 472, 126 (1999).CrossRefGoogle Scholar
23.Levendorf, A.M., Chen, D.J., Rom, C.L., Liu, Y., and Tong, Y.Y.J.: Electrochemical and in situ ATR-SEIRAS investigations of methanol and CO electrooxidation on PVP-free cubic and octahedral/tetrahedral Pt nanoparticles. RSC Adv. 4, 21284 (2014).Google Scholar
24.Sato, T., Kunimatsu, K., Okaya, K., Yano, H., Watanabe, M., and Uchida, H.: In situ ATR-FTIR analysis of the CO-tolerance mechanism on Pt2Ru3/C catalysts prepared by the nanocapsule method. Energy Environ. Sci. 4, 433 (2011).Google Scholar
25.Sato, T., Okaya, K., Kunimatsu, K., Yano, H., Watanabe, M., and Uchida, H.: Effect of particle size and composition on CO-tolerance at Pt-Ru/C catalysts analyzed by in situ attenuated total reflection FTIR spectroscopy. ACS Catal. 2, 450 (2012).CrossRefGoogle Scholar
26.Han, B.C. and Ceder, G.: Effect of coadsorption and Ru alloying on the adsorption of CO on Pt. Phys. Rev. B 74, 205418 (2005).Google Scholar
27.Khorshed, Md.A., Saito, S., and Takaba, H.: Density functional theory study on the adsorption of H, OH, and CO and coadsorption of CO with H/OH on the Pt2Ru3 surfaces. J. Mater. Res. 31, 2617 (2016).Google Scholar
28.Khorshed, Md.A., Saito, S., and Takaba, H.: Modeling of equilibrium conformation of Pt2Ru3 nanoparticles using the density functional theory and Monte Carlo simulations. J. Mater. Res. 32, 1573 (2017).Google Scholar
29.Hills, C.W., Nashner, M.S., Frenkel, A.I., Shapley, J.R., and Nuzzo, R.G.: Carbon support effects on bimetallic Pt-Ru nanoparticles formed from molecular precursors. Langmuir 15, 690 (1999).Google Scholar
30.Nashner, M.S., Frenkel, A.I., Adler, D.L., Shapley, J.R., and Nuzzo, R.G.: Structural characterization of carbon-supported platinum-ruthenium nanoparticles from the molecular cluster precursor PtRu5C(CO)16. J. Am. Chem. Soc. 119, 7760 (1997).Google Scholar
31.Yuge, K.: Segregation of Pt28Rh27 bimetallic nanoparticles: a first-principles study. J. Phys.: Condens. Matter. 22, 245401 (2010).Google Scholar
32.Alayoglu, S., Zavalij, P., Eichhorn, B., Wang, O., Frenkel, A.I., and Chupas, P.: Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles. ACS Nano 3, 3127 (2009).CrossRefGoogle ScholarPubMed
33.Koper, M.T.M., Jansen, A.P.J., van Santen, R.A., Lukkien, J.J., and Hilbers, P.A.J.: Monte Carlo simulations of a simple model for the electrocatalytic CO oxidation on platinum. J. Chem. Phys. 109, 6051 (1998).Google Scholar
34.Andreaus, B. and Eikerling, M.: Active site model for CO adlayer electrooxidation on nanoparticle catalysts. J. Electroanal. Chem. 607, 121 (2007).Google Scholar
35.Saravanan, C., Markovic, N.M., Head-Gordon, M., and Ross, P.N.: Stripping and bulk CO electro-oxidation at the Pt-electrode interface: dynamic Monte Carlo simulations. J. Chem. Phys. 114, 6404 (2001).CrossRefGoogle Scholar
36.Maillard, F., Lu, G.-Q., Wieckowski, A., and Stimming, U.: Ru decorated Pt surfaces as model fuel cell electrocatalyst for CO electro-oxidation. J. Phys.Chem. B 109, 16230 (2005).Google Scholar
37.Andreaus, B., Maillard, F., Kocylo, J., Savinova, E.R., and Eikerling, M.: Kinetic modeling of COad monolayer oxidation on carbon-supported platinum nanoparticles. J. Phys. Chem. B 110, 21028 (2006).CrossRefGoogle ScholarPubMed
38.Petukhov, A.V.: Effect of molecular mobility on kinetics of an electrochemical Langmuir-Hinshelwood reaction. Chem. Phys. Lett. 277, 539 (1997).CrossRefGoogle Scholar
39.Saravanan, C., Koper, M.T.M., Markovic, N.M., Head-Gordon, M., and Ross, P.N.: Modeling base voltammetry and CO electro-oxidation at the Pt (111)-electrolyte interface: Monte Carlo simulations including anion adsorption. Phys. Chem. Chem. Phys. 4, 2660 (2002).CrossRefGoogle Scholar
40.Dowben, P.A. and Miller, P.A. (eds): A. Surface Segregation Phenomena. CRC Press: Boca Raton, Florida, 1990.Google Scholar
41.Rodriguez, J.A.: Physical and chemical properties of bimetallic surfaces. Surf. Sci. Rep. 24, 223 (1996).Google Scholar
42.Polak, M. and Rubinovich, L.: The interplay of surface segregation and atomic order in alloys. Surf. Sci. Rep. 38, 127 (2000).Google Scholar
43.Han, B.C., Van der Ven, A., Ceder, G., and Hwang, B.J.: Surface segregation and ordering of alloy surfaces in the presence of adsorbates. Phys. Rev. B 72, 205409 (2005).Google Scholar
44.Wang, G., Van Hove, M.A., and Ross, P.N.: Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles. J. Chem. Phys. 122, 024706 (2005).Google Scholar
45.Yuge, K., Seko, A., Kuwabara, A., Oba, F., and Tanaka, I.: First-principles study of bulk ordering and surface segregation in Pt-Rh binary alloys. Phys. Rev. B 74, 174202 (2006).Google Scholar
46.Delley, B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990).Google Scholar
47.Delley, B.: Fast calculation of electrostatics in crystals and large molecules. J. Phys. Chem. 100, 6107 (1996).Google Scholar
48.Delley, B.: From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756 (2000).Google Scholar
49.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
50.Sato, T., Kunimatsu, K., Uchida, H., and Watanabe, M.: Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods Part 1. ATR-FTIRAS spectra of CO adsorbed on highly dispersed Pt catalyst on carbon black and carbon un-supported Pt black. Electrochim. Acta 53, 1265 (2007).Google Scholar
51.Wang, P., Chu, H.S., Yan, Y.Y., and Hsueh, K.L.: Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells. J. Power Sources 170, 235 (2007).Google Scholar
Supplementary material: File

Alam and Takaba supplementary material

Alam and Takaba supplementary material 1

Download Alam and Takaba supplementary material(File)
File 1.5 MB