Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T07:44:40.811Z Has data issue: false hasContentIssue false

Enhanced light-matter interactions in size tunable graphene–gold nanomesh

Published online by Cambridge University Press:  20 December 2019

Vivek Garg
Affiliation:
IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai400076, India Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India Department of Mechanical and Aerospace Engineering, Monash University, Melbourne3800, Australia
Bhaveshkumar Kamaliya
Affiliation:
IITB-Monash Research Academy, Indian Institute of Technology Bombay, Mumbai400076, India Department of Mechanical and Aerospace Engineering, Monash University, Melbourne3800, Australia Department of Physics, Indian Institute of Technology Bombay, Mumbai400076, India
Rakesh G. Mote*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
Jing Fu
Affiliation:
Department of Mechanical and Aerospace Engineering, Monash University, Melbourne3800, Australia
*
Address all correspondence to Rakesh G. Mote at [email protected]
Get access

Abstract

A hybrid graphene–gold nanomesh, realized through Au deposition on a patterned graphene nanomesh with a focused ion beam, is introduced and illustrated for enhanced light absorption in the visible spectrum. Numerical studies reveal that the hybrid nanomesh with dual resonances in the visible spectrum exhibit ~50% light absorption and enhancement factor as high as ~1 × 108. The simulations also show that the enhanced optical absorption is associated with the excitation of surface plasmons. This is confirmed through the localization of electric fields at the resonant wavelengths. Such a hybrid graphene–gold nanomesh exhibiting enhanced light-matter interactions paves the way toward plasmonics, surface-enhanced Raman scattering applications, etc.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
2.Banhart, F., Kotakoski, J., and Krasheninnikov, A.V.: Structural defects in graphene. ACS Nano 5, 26 (2011).CrossRefGoogle ScholarPubMed
3.Dvorak, M., Oswald, W., and Wu, Z.: Bandgap opening by patterning graphene. Sci. Rep. 3, 2289 (2013).CrossRefGoogle ScholarPubMed
4.Han, M.Y., Özyilmaz, B., Zhang, Y., and Kim, P.: Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).CrossRefGoogle ScholarPubMed
5.Bai, J., Zhong, X., Jiang, S., Huang, Y., and Duan, X.: Graphene nanomesh. Nat. Nano 5, 190 (2010).CrossRefGoogle ScholarPubMed
6.Sinitskii, A., Tour, J.M., and Am, J.: Patterning Graphene through the self-assembled templates: toward periodic two-dimensional graphene nanostructures with semiconductor properties. Chem. Soc. 132, 14730 (2010).CrossRefGoogle ScholarPubMed
7.Zhang, T., Wu, S., Yang, R., and Zhang, G.: Graphene: nanostructure engineering and applications. Front. Phys. 12, 127206 (2017).CrossRefGoogle Scholar
8.Gopalan, K.K., Paulillo, B., Mackenzie, D.M.A., Rodrigo, D., Bareza, N., Whelan, P.R., Shivayogimath, A., and Pruneri, V.: Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Lett. 18, 5913 (2018).CrossRefGoogle ScholarPubMed
9.Zhan, Z., Liu, L., Wang, W., Cao, Z., Martinelli, A., Wang, E., Cao, Y., Chen, J., Yurgens, A., and Sun, J.: Ultrahigh surface-enhanced Raman scattering of graphene from Au/Graphene/Au sandwiched structures with subnanometer gap. Adv. Opt. Mater. 4, 2021 (2016).CrossRefGoogle Scholar
10.Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A.C.: Graphene photonics and optoelectronics. Nat. Photon 4, 611 (2010).CrossRefGoogle Scholar
11.Fang, Z., Thongrattanasiri, S., Schlather, A., Liu, Z., Ma, L., Wang, Y., Ajayan, P.M., Nordlander, P., Halas, N.J., and García de Abajo, F.J.: Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388 (2013).CrossRefGoogle ScholarPubMed
12.Li, Y., Burnham, K., Dykes, J., and Chopra, N.: Self-patterning of graphene-encapsulated gold nanoparticles for surface-enhanced Raman spectroscopy. MRS Commun. 8, 79 (2018).CrossRefGoogle Scholar
13.Liao, L., Lin, Y.-C., Bao, M., Cheng, R., Bai, J., Liu, Y., Qu, Y., Wang, K.L., Huang, Y., and Duan, X.: High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305 (2010).CrossRefGoogle ScholarPubMed
14.Reed, J.C., Zhu, H., Zhu, A.Y., Li, C., and Cubukcu, E.: Graphene-enabled silver nanoantenna sensors. Nano Lett. 12, 4090 (2012).CrossRefGoogle ScholarPubMed
15.Li, J., Zheng, C., Liu, B., Chou, T., Kim, Y., Qiu, S., Li, J., Yan, W., and Fu, J.: Controlled graphene encapsulation: a nanoscale shield for characterising single bacterial cells in liquid. Nanotechnology 29, 365705 (2018).CrossRefGoogle ScholarPubMed
16.Adineh, V.R., Zheng, C., Zhang, Q., Marceau, R.K.W., Liu, B., Chen, Y., Si, K.J., Weyland, M., Velkov, T., Cheng, W., Li, J., and Fu, J.: Graphene-enhanced 3D chemical mapping of biological specimens at near-atomic resolution. Adv. Funct. Mater. 28, 1801439 (2018).CrossRefGoogle Scholar
17.Fried, J.P., Swett, J.L., Bian, X., and Mol, J.A.: Challenges in fabricating graphene nanodevices for electronic DNA sequencing. MRS Commun. 8, 703 (2018).CrossRefGoogle Scholar
18.Garg, V., Chou, T., Liu, A., Marco, A.D., Kamaliya, B., Qiu, S., Mote, R.G., and Fu, J.: Weaving nanostructures with site-specific ion Induced bidirectional bending. Nanoscale Adv. 1, 3067 (2019).CrossRefGoogle Scholar
19.Briot, N.J. and Balk, T.J.: Focused Ion beam characterization of deformation resulting from nanoindentation of nanoporous gold. MRS Commun. 8, 132 (2018).CrossRefGoogle Scholar
20.Garg, V., Zhang, S., Mote, R.G., Chen, Y., Cao, L., and Fu, J.: “Stand-Out”: a novel approach for preparing sub-100 nm samples through in situ ion induced bending. Microsc. Microanal. 25, 898 (2019).CrossRefGoogle Scholar
21.Stehling, N., Masters, R., Zhou, Y., O'Connell, R., Holland, C., Zhang, H., and Rodenburg, C.: New perspectives on nano-engineering by secondary electron spectroscopy in the helium ion and scanning electron microscope. MRS Commun. 8, 226 (2018).CrossRefGoogle Scholar
22.Garg, V., Mote, R.G., and Fu, J.: Focused ion beam direct fabrication of subwavelength nanostructures on silicon for multicolor generation. Adv. Mater. Technol. 3, 1800100 (2018).CrossRefGoogle Scholar
23.Garg, V., Mote, R.G., and Fu, J.: Focused ion beam fabrication: process development and optimization Strategy for optical applications. In Precision Product-Process Design and Optimization, edited by Pande, S. S., and Dixit, U. S. (Springer, Singapore, 2018) pp. 189209.CrossRefGoogle Scholar
24.Garg, V., Mote, R.G., and Fu, J.: Rapid prototyping of highly ordered subwavelength silicon nanostructures with enhanced light trapping. Opt. Mater. 94, 75 (2019).CrossRefGoogle Scholar
25.Buchheim, J., Wyss, R.M., Shorubalko, I., and Park, H.G.: Understanding the interaction between energetic ions and freestanding graphene towards practical 2D perforation. Nanoscale 8, 8345 (2016).10.1039/C6NR00154HCrossRefGoogle ScholarPubMed
26.Celebi, K., Buchheim, J., Wyss, R.M., Droudian, A., Gasser, P., Shorubalko, I., Kye, J.-I., Lee, C., and Park, H.G.: Ultimate permeation across atomically thin porous graphene. Science 344, 289 (2014).CrossRefGoogle ScholarPubMed
27.Falkovsky, L.A.: Optical properties of graphene. J. Phys. Conf. Ser. 129, 012004 (2008).CrossRefGoogle Scholar
28.Gao, H., Henzie, J., and Odom, T.W.: Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. Nano Lett. 6, 2104 (2006).CrossRefGoogle ScholarPubMed
29.Zhao, Y., Li, X., Du, Y., Chen, G., Qu, Y., Jiang, J., and Zhu, Y.: Plasmonic-enhanced Raman scattering of graphene on growth substrates and Its application in SERS. Nanoscale 6, 13754 (2014).CrossRefGoogle ScholarPubMed
30.Hao, J., Zhou, L., and Qiu, M.: Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys. Rev. B 83, 165107 (2011).CrossRefGoogle Scholar
31.Song, M., Kudyshev, Z.A., Yu, H., Boltasseva, A., Shalaev, V.M., and Kildishev, A.V.: Achieving full-color generation with polarization-tunable perfect light absorption. Opt. Mater. Express 9, 779 (2019).CrossRefGoogle Scholar
32.Perrakis, G., Tsilipakos, O., Kenanakis, G., Kafesaki, M., Soukoulis, C.M., and Economou, E.N.: Perfect optical absorption with nanostructured metal films: design and experimental demonstration. Opt. Express 27, 6842 (2019).CrossRefGoogle ScholarPubMed
33.Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., and Roth, S.: The structure of suspended graphene sheets. Nature 446, 60 (2007).CrossRefGoogle ScholarPubMed
34.Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., and Coleman, J.N.: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).CrossRefGoogle ScholarPubMed
35.Hang, S., Moktadir, Z., and Mizuta, H.: Raman study of damage extent in graphene nanostructures carved by high energy helium ion beam. Carbon 72, 233 (2014).CrossRefGoogle Scholar