Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T07:31:54.009Z Has data issue: false hasContentIssue false

Effect of the spacer arm on non-specific binding in membrane affinity chromatography

Published online by Cambridge University Press:  18 January 2018

Eleonora Lalli
Affiliation:
Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
Giulio C. Sarti
Affiliation:
Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
Cristiana Boi*
Affiliation:
Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali, DICAM, Alma Mater Studiorum-Università di Bologna, via Terracini 28, 40131 Bologna, Italy
*
Address all correspondence to Cristiana Boi at [email protected]
Get access

Abstract

The preparation, screening, and characterization of affinity membranes require a deep knowledge of the behavior of all components of the affinity material. Several studies report the effect of different spacers in combination with the ligand molecule, but the effect of the spacer arm “per se” is generally disregarded. The effect of the spacer 1,2-diaminoethane on non-specific protein adsorption was recently investigated and the results were compared with the ones obtained with A2P affinity membranes. The results show that this spacer has indeed an important effect and that similar specific studies need to be performed for every spacer molecule.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Reichert, J.M., Rosensweig, C.J., Faden, L.B., and Dewitz, M.C.: Monoclonal antibody successes in the clinic. Nat. Biotechnol. 23, 10731078 (2005).Google Scholar
2. Shukla, A.A., Hubbard, B., Tressel, T., Guhan, S., and Low, D.: Downstream processing of monoclonal antibodies-application of platform approaches. J. Chromatogr. B 848, 2839 (2007).Google Scholar
3. Huse, K., Böhme, H.J., and Scholz, G.H.: Purification of antibodies by affinity chromatography. J. Biochem. Bioph. Meth. 51, 217 (2002).Google Scholar
4. Blain, L.: Protein A: the life of a disruptive technology. Bioprocess Int. 11, 2938 (2013).Google Scholar
5. Gagnon, P.: Emerging challenges to protein A: chromatin-directed clarification enables new purification options. Bioprocess Int. 11, 4452 (2013).Google Scholar
6. Farid, S.S.: Process economics of industrial monoclonal antibody manufacture. J. Chromatogr. B 848, 818 (2007).Google Scholar
7. Kelley, B.: Very large scale monoclonal antibody purification: the case for conventional unit operations. Biotechnol. Prog. 23, 9951008 (2007).Google Scholar
8. Orr, V., Zhong, L., Moo-Young, M., and Chou, C.P.: Recent advances in bioprocessing application of membrane chromatography. Biotechnol. Adv. 31, 450465 (2013).Google Scholar
9. Karst, D.J., Steinebach, F., Soos, M., and Morbidelli, M.: Process performance and product quality in an integrated continuous antibody production process. Biotechnol. and Bioeng. 114, 298307 (2017).Google Scholar
10. Boi, C., Dimartino, S., Hofer, S., Horak, J., Williams, S., Sarti, G.C., and Lindner, W.: Influence of different spacer arms on Mimetic Ligand™ A2P and B14 membranes for human IgG purification. J. Chromatogr. B 879, 16331640 (2011).Google Scholar
11. Boi, C., Algeri, C., and Sarti, G.C.: Preparation and characterization of polysulfone affinity membranes bearing a synthetic peptide ligand for the separation of murine immunoglobulins. Biotechnol. Prog. 24, 13041313 (2008).Google Scholar
12. Klein: Affinity Membranes (Wiley, New York, USA, 1991).Google Scholar
13. Zamolo, L., Busini, V., Moiani, D., Moscatelli, D., and Cavallotti, C.: Molecular dynamic investigation of the interaction of supported affinity ligands with monoclonal antibodies. Biotechnol. Prog. 24, 527539 (2008).Google Scholar
14. Horak, J., Hofer, S., and Lindner, W.: Optimization of a ligand immobilization and azide group endcapping concept via “Click-Chemistry” for the preparation of adsorbents for antibody purification. J. Chromatogr. B 878, 33823394 (2010).Google Scholar
15. Zamolo, L., Salvalaglio, M., Cavallotti, C., Galarza, B., Sadler, C., Williams, S., Hofer, S., Horak, J., and Lindner, W.: Experimental and theoretical investigation of effect of spacer arm and support matrix of synthetic affinity chromatographic materials for the purification of monoclonal antibodies. J. Phys. Chem. B 114, 93679380 (2010).Google Scholar
16. Boi, C., Busini, V., Salvalaglio, M., Cavallotti, C., and Sarti, G.C.: Understanding ligand-protein interactions in affinity membrane chromatography for antibody purification. J. Chromatogr. A 1216, 86878696 (2009).Google Scholar
17. Boi, C., Dimartino, S., and Sarti, G.C.: Modelling and simulation of affinity membrane adsorption. J. Chromatogr. A 1162, 2433 (2007).Google Scholar
19. Guiochon, G., Felinger, A., Shirazi, D.G., and Katti, A.M.: Fundamentals of Preparative and Nonlinear Chromatography, 2nd ed. (Elsevier, San Diego, 2006).Google Scholar
20. Herigstad, M.O., Dimartino, S., Boi, C., and Sarti, G.C.: Experimental characterization of the transport phenomena, adsorption, and elution in a protein A affinity monolithic medium. J. Chromatogr. A 1407, 130138 (2015).Google Scholar
21. Morselli, F.: Caratterizzazione di membrane di affinità per IgG umana. Master Thesis, Università di Bologna, Bologna, Italy, Academic Year 2007–08.Google Scholar
22. Sarfert, F.T., and Etzel, M.R.: Mass transfer limitations in protein separations using ion-exchange membranes. J. Chromatogr. A 764, 320 (1997).Google Scholar