Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:36:32.772Z Has data issue: false hasContentIssue false

Dynamic covalent hexahydrotriazine breakdown through nucleophilic attack by phosphine

Published online by Cambridge University Press:  27 March 2019

Peter J. Boul*
Affiliation:
Aramco Services Company, Houston, Texas 77061, USA
Diana K. Rasner
Affiliation:
Aramco Services Company, Houston, Texas 77061, USA
Peter D. Jarowski
Affiliation:
ChemAlive LLC, 1003, Lausanne, Switzerland
Carl J. Thaemlitz
Affiliation:
Aramco Services Company, Houston, Texas 77061, USA
*
Address all correspondence to Peter J. Boul at [email protected]
Get access

Abstract

In the current manuscript we discuss the response of dynamic metallogels that display reversion to the liquid state when exposed to phosphines. The metallogels are formed through the condensation of formaldehyde and poly(alkyloxide)amines in polar aprotic solvents. The gel formation can be catalyzed with trivalent metals (Al(III and Fe(III)) with concomitant enhanced dynamism (gelation/degelation). When various phosphines are introduced, the metallogel is irreversibly liquefied. This process adds a new vector for controlling the bulk properties of this class of materials. Here, we explore the mechanism in detail for the reaction of tris(carboxyethyl)phosphine with N,N,N-triethoxylethyl-1,3,5-hexahydro-1,3,5-triazine (HEHT, 1) a stable derivative of the active hexahydrotriazine (HT) core in dimethylformamide in the presence or absence of Al(III). Additionally, density functional theory is used on the model N,N,N-trimethyl system (MHT, 2) to estimate reaction parameters and predict nuclear magnetic resonance spectra.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jin, Y., Yu, C., Denman, R.J., and Zhang, W.: Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634 (2013).Google Scholar
2.Buchs, B., Guillaume, G., Trachsel, A., de Saint Laumer, J.-Y., Lehn, J.-M., and Hermann, A.: Reversible aminal formation: controlling the evaporation of bioactive volatiles by dynamic combinatorial/covalent chemistry. Eur. J. Org. Chem. 4, 681 (2011).Google Scholar
3.Herrmann, A., Giuseppone, N., and Lehn, J.-M.: Electric-field triggered controlled release of bioactive volatiles from imine-based liquid crystalline phases. Chem. Eur. J. 15, 117 (2008).Google Scholar
4.de Hatten, X., Bell, N., Yufa, N., Christmann, G., and Nitschke, J.R.: A dynamic covalent, luminescent metallopolymer that undergoes sol-to-gel transition on temperature rise. J. Am. Chem. Soc. 133, 3158 (2011).Google Scholar
5.Lehn, J.-M.: Perspectives in chemistry-aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed. 54, 32763289 (2015).Google Scholar
6.Xu, J.-F., Chen, Y.-Z., Wu, L.-Z., Tung, C.-H., and Yang, Q.-Z.: Dynamic covalent bond based on Reversible photo [4+4] cycloaddition of anthracene for construction of double-dynamic polymers. Org. Lett. 15, 6148 (2013).Google Scholar
7.Giuseppone, N., and Lehn, J.-M.: Electric-field modulation of component exchange in constitutional dynamic liquid crystals. Angew. Chem. 118, 4735 (2006).Google Scholar
8.Jin, Y., Song, L., Su, Y., Zhu, L., Pang, Y., Qiu, F., Tong, G., Yan, D., Zhu, B., and Zhu, X.: Oxime linkage: a robust tool for the design of pH-sensitive polymeric drug carriers. Biomacromolecules 12, 3460 (2011).Google Scholar
9.Vantomme, G., and Lehn, J.-M.: Photo- and thermoresponsive supramolecular assemblies: reversible photorelease of K+ ions and constitutional dynamics. Angew. Chem. Int. Ed. 52, 3940 (2013).Google Scholar
10.Ono, T., Fujii, S., Nobori, T., and Lehn, J.-M.: Optodynamers: expression of color and fluorescence at the interface between two films of different dynamic polymers. Chem. Commun. 46, 4648 (2007).Google Scholar
11.Deng, G., Li, F., Yu, H., Liu, F., Liu, C., Sun, W., Jiang, H., and Chen, Y.: Dynamic hydrogels with an environmental adaptive self-healing ability and dual responsive sol-gel transitions. ACS Macro Lett. 1, 275279 (2012).Google Scholar
12.Lehn, J.-M.: Dynamers: dynamic molecular and supramolecular polymers. Prog. Polym. Sci. 30, 814 (2005).Google Scholar
13.Otto, S.: Dynamic molecular networks: from synthetic receptors to self-replicators. Acc. Chem. Res. 45, 2200 (2012).Google Scholar
14.Whitaker, D.E., Mahon, C.S., and Fulton, D.A.: Thermo-responsive dynamic covalent single-chain polymer nanoparticles reversibly transform into a hydrogel. Angew. Chem. Int. Ed. 52, 956 (2013).Google Scholar
15.Wojtecki, R.J., Meador, M.A., and Rowan, S.J.: Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 10, 14 (2011).Google Scholar
16.Reutenauer, P., Buhler, E., Boul, P.J., Candau, S.J., and Lehn, J.-M.: Room temperature dynamic polymers based on Diels–Alder chemistry. Chem. – Eur. J. 15, 1893 (2009).Google Scholar
17.Chen, X., Dam, M.A., Ono, K., Mal, A., Shen, H., Nutt, S.R., Sheran, K., and Wudl, F.: A thermally re-mendable cross-linked polymeric material. Science 295, 1698 (2002).Google Scholar
18.Bunyapaiboonsri, T., Ramström, O., Lohmann, S., Lehn, J.-M., Peng, L., and Goeldner, M.: Dynamic deconvolution of a pre-equilibrated dynamic combinatorial library of acetylcholinesterase inhibitors. ChemBioChem 2, 438 (2001).Google Scholar
19.Hayden, L.M., Kim, W.K., Chafin, A.P., and Lindsay, G.A.: Synthesis and nonlinear optical properties of a new syndioregic main chain hydrazine polymer. Macromolecules 34, 1493 (2001).Google Scholar
20.Schmitt, J.-L. and Lehn, J.-M.: Self-assembly of non-biological polymeric strands undergoing enforced helical self-organization. Helv. Chim. Acta 86, 3417 (2003).Google Scholar
21.Yang, H., Zhang, Y., and Cheng, J.: Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014).Google Scholar
22.Nguyen, R. and Huc, I.: Optimizing the reversibility of hydrazine formation for dynamic combinatorial chemistry. Chem. Commun. 942, 942943 (2003).Google Scholar
23.Furlan, R.L.E., Cousins, G.R.L., and Sanders, J.K.M.: Molecular amplification in a dynamic combinatorial library using non-covalent interactions. Chem. Commun. 18, 1761 (2000).Google Scholar
24.Montarnal, D., Capelot, M., Tournilhac, F., and Leibler, L.: Silica-like malleable materials from permanent organic networks. Science 334, 965 (2011).Google Scholar
25.Kricheldorf, H.R.: Macrocycles. 21. Role of ring-ring equilibria in thermodynamically controlled polycondensations. Macromolecules 36, 2302 (2003).Google Scholar
26.Colquhoun, H.M., Lewis, D.F., Ben-Haida, A., and Hodge, P.: Ring-chain interconversion in high-performance polymer systems. 2. Ring-opening polymerization-copolyetherification in the synthesis of aromatic poly(ether sulfones). Macromolecules 36, 3775 (2003).Google Scholar
27.Scott, T.F., Schneider, A.D., Cook, W.D., and Bowman, C.N.: Photoinduced plasticity in cross-linked polymers. Science 308, 1615 (2005).Google Scholar
28.Cromwell, O.R., Chung, J., and Guan, Z.: Malleable and self-healing covalent polymer networks through tunable dynamic boronic ester bonds. J. Am. Chem. Soc. 137, 6492 (2015).Google Scholar
29.Fox, C.H., ter Huurrne, G.M., Wojtecki, R.J., Jones, G.O., Horn, H.W., Meijer, E.W., Frank, C.W., Hedrick, J.L., and Garcia, J.M.: Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels. Nat. Commun. 15, 7417 (2015).Google Scholar
30.García, J.M., Jones, G.O., Virwani, K., McCloskey, B.D., Boday, D.J., ter Huurne, G.M., Horn, H.W., Coady, D.J., Bintaleb, A.M., Alabdulrahman, A.M.S., Alsewailem, F., Almegren, H.A.A., and Hedrick, J.L.: Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344, 732 (2014).Google Scholar
31.Wojtecki, R.J., Jones, G.O., Yuen, A.Y., Chin, W., Boday, D.J., Nelson, A., García, J.M., Yang, Y.Y., and Hedrick, J.L.: Developments in dynamic covalent chemistries from the reaction of thiols with hexahydrotriazines. J. Am. Chem. Soc. 137, 14248 (2015).Google Scholar
32.Bakke, J.M., Buhaug, J., and Riha, J.: Hydrolysis of 1,3,5-tris(2-hydroxyethyl)hexahydro-s-triazine and Its Reaction with H2S. Ind. Eng. Chem. Res. 40, 60516054 (2001).Google Scholar
33.Boul, P.J., Jarowski, P.D., and Thaemlitz, C.J.: Phase change transformations with dynamically addressable aminal metallogels. J. Am. Chem. Soc. 139, 15385 (2017).Google Scholar
34.Boul, P.J., Rasner, D., and Thaemlitz, C.J.: Constitutionally dynamic oil well construction fluids-metalloaminal chemistry. Ind. Eng. Chem. Res. 57, 17043 (2018).Google Scholar
35.Henderson, W.A., and Buckler, S.A.: The nucleophilicity of phosphines. J. Am. Chem. Soc. 82, 57945800 (1960).Google Scholar
36.Hudson, H.R.: Nucleophilic reactions of phosphines. In The Chemistry of Organophosphorus Compounds, vol. 1, edited by Hartley, F.R. (John Wiley & Sons, Chichester, 1990), pp. 385471.Google Scholar
37.Methot, J.L., and Roush, W.R.: Nucleophilic phosphine organocatalysis. Adv. Synth. Catal. 346, 1035 (2004).Google Scholar
38.Myers, M., Connor, E.F., Glauser, T., Möck, A., Nyce, G., and Hedrick, J.L.: Phosphines: nucleophilic organic catalysts for the controlled ring-opening polymerization of lactides. J. Polym. Sci: Part A:Polym. Chem. 40, 844851 (2002).Google Scholar
39.Breen, T.L., and Stephan, D.W.: Substitution or nucleophilic attack by phosphines on ZrCl4(THF)2. Inorg. Chem. 31, 4019 (1992).Google Scholar
40.Jones, G.O., Garcia, J.M., Horn, H.W., and Hedrick, J.L.: Computational and experimental studies on the mechanism of formation of poly(hexahydrotriazine)s and poly(hemiaminal)s from the reactions of amines with formaldehyde. Org. Lett. 16, 5502 (2014).Google Scholar
Supplementary material: File

Boul et al. supplementary material

Boul et al. supplementary material 1

Download Boul et al. supplementary material(File)
File 828 KB