Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T07:22:31.476Z Has data issue: false hasContentIssue false

Diketopyrrolopyrrole-based polymer:fullerene nanoparticle films with thermally stable morphology for organic photovoltaic applications

Published online by Cambridge University Press:  02 February 2017

Natalie P. Holmes*
Affiliation:
Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
Ben Vaughan
Affiliation:
Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan NSW 2308, Australia CSIRO Energy Technology, P. O. Box 330, Newcastle 2300, Australia
Evan L. Williams
Affiliation:
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
Renee Kroon
Affiliation:
Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, 41296 Göteborg, Sweden
Mats R. Anderrson
Affiliation:
Ian Wark Research Institute, University of South Australia, Mawson Lakes Campus, SA 5095, Australia Department of Chemical and Biological Engineering/Polymer Technology, Chalmers University of Technology, 41296 Göteborg, Sweden
A.L.David Kilcoyne
Affiliation:
Lawrence Berkeley National Laboratory, Advanced Light Source, Berkeley, CA 94720, USA
Prashant Sonar
Affiliation:
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane 4000, Australia
Xiaojing Zhou
Affiliation:
Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
Paul C. Dastoor
Affiliation:
Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
Warwick J. Belcher
Affiliation:
Centre for Organic Electronics, University of Newcastle, University Drive, Callaghan NSW 2308, Australia
*
Address all correspondence to Natalie P. Holmes at [email protected]
Get access

Abstract

Polymer:fullerene nanoparticles (NPs) offer two key advantages over bulk heterojunction (BHJ) films for organic photovoltaics (OPVs), water-processability and potentially superior morphological control. Once an optimal active layer morphology is reached, maintaining this morphology at OPV operating temperatures is key to the lifetime of a device. Here we study the morphology of the PDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}):PC71BM ([6,6]-phenyl C71 butyric acid methyl ester) NP system and then compare the thermal stability of NP and BHJ films to the common poly(3-hexylthiophene) (P3HT): phenyl C61 butyric acid methyl ester (PC61BM) system. We find that material Tg plays a key role in the superior thermal stability of the PDPP-TNT:PC71BM system; whereas for the P3HT:PC61BM system, domain structure is critical.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wienk, M.M., Turbiez, M., Gilot, J., and Janssen, R.A.J.: Narrow bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv. Mater. 20, 2556 (2008).Google Scholar
2. Li, W., Hendriks, K.H., Furlan, A., Roelofs, W.S.C., Wienk, M.M., and Janssen, R.A.J.: Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J. Am. Chem. Soc. 135, 18942 (2013).Google Scholar
3. Zhou, E., Wei, Q., Yamakawa, S., Zhang, Y., Tajima, K., Yang, C., and Hashimoto, K.: Diketopyrrolopyrrole-based semiconducting polymer for photovoltaic device with photocurrent response wavelengths up to 1.1 µm. Macromolecules 43, 821 (2010).Google Scholar
4. Sonar, P., Singh, S.P., Li, Y., Ooi, Z.-E., Ha, T., Wong, I., Soh, M.S., and Dodabalapur, A.: High mobility organic thin film transistor and efficient photovoltaic devices using versatile donor–acceptor polymer semiconductor by molecular design. Energy Environ. Sci. 4, 2288 (2011).CrossRefGoogle Scholar
5. Liu, F., Gu, Y., Jung, J.W., Jo, W.H., and Russell, T.P.: On the morphology of polymer-based photovoltaics. J. Polym. Sci. B: Polym. Phys. 50, 1018 (2012).Google Scholar
6. Holmes, N.P., Ulum, S., Sista, P., Burke, K.B., Wilson, M.G., Stefan, M.C., Zhou, X., Dastoor, P.C., and Belcher, W.J.: The effect of polymer molecular weight on P3HT:PCBM nanoparticulate organic photovoltaic device performance. Sol. Energy Mater. Sol. Cells 128, 369 (2014).Google Scholar
7. Vaughan, B., Williams, E.L., Holmes, N.P., Sonar, P., Dodabalapur, A., Dastoor, P.C., and Belcher, W.J.: Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer. Phys. Chem. Chem. Phys. 16, 2647 (2014).Google Scholar
8. Lindqvist, C., Bergqvist, J., Bäcke, O., Gustafsson, S., Wang, E., Olssen, E., Inganäs, O., Andersson, M.R., and Müller, C.: Fullerene mixtures enhance the thermal stability of a non-crystalline polymer solar cell blend. Appl. Phys. Lett. 104, 153301 (2014).Google Scholar
9. Guerrero, A. and Garcia-Belmonte, G.: Recent advances to understand morphology stability of organic photovoltaics. Nano-Micro Lett. 9, 10 (2016).CrossRefGoogle ScholarPubMed
10. Bertho, S., Janssen, G., Cleij, T.J., Conings, B., Moons, W., Gadisa, A., D'Haen, J., Goovaerts, E., Lutsen, L., Manca, J., and Vanderzande, D.: Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer:fullerene solar cells. Sol. Energy Mater. Sol. Cells 92, 753 (2008).CrossRefGoogle Scholar
11. Müller, C.: On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem. Mater. 27, 2740 (2015).CrossRefGoogle Scholar
12. Reese, M.O., Gevorgyan, S.A., Jørgensen, M., Bundgaard, E., Kurtz, S.R., Ginley, D.S., Olson, D.C., Lloyd, M.T., Morvillo, P., Katz, E.A., Elschner, A., Haillant, O., Currier, T.R., Shrotriya, V., Hermenau, M., Riede, M., Kirov, K.R., Trimmel, G., Rath, T., Inganäs, O., Zhang, F., Andersson, M., Tvingstedt, T., Lira-Cantu, M., Laird, D., McGuiness, C., Gowrisankerm, S., Pannone, M., Xiao, M., Hauch, J., Steim, R., DeLongchamp, D.M., Rösch, R., Hoppe, H., Espinosa, N., Urbina, A., Yaman-Uzunoglu, G., Bonekamp, J.-B., van Breemen, A.J.J.M., Girotto, C., Voroshazi, E., and Krebs, F.C.: Consensus stability testing protocols for organic photovoltaic materials and devices. Sol. Energy Mater. Sol. Cells 95, 1253 (2011).Google Scholar
13. Tamayo, A.B., Walker, B., and Nguyen, T.-Q.: A low band gap, solution processable oligothiophene with a diketopyrrolopyrrole core for use in organic solar cells. J. Phys. Chem. C 112, 11545 (2008).Google Scholar
14. Yamamoto, N.A.D., Payne, M.E., Koehler, M., Facchetti, A., Roman, L.S., and Arias, A.C.: Charge transport model for photovoltaic devices based on printed polymer:fullerene nanoparticles. Sol. Energy Mater. Sol. Cells 141, 171 (2015).CrossRefGoogle Scholar
15. Holmes, N.P., Nicolaidis, N., Feron, K., Barr, M., Burke, K.B., Al-Mudhaffer, M., Sista, P., Kilcoyne, A.L.D., Stefan, M.C., Zhou, X., Dastoor, P.C., and Belcher, W.J.: Probing the origin of photocurrent in nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 140, 412 (2015).Google Scholar
16. Williams, E.L., Gorelik, S., Phang, I., Bosman, M., Vijila, C., Subramanian, G.S., Sonar, P., Hobley, J., Singh, S.P., Matsuzaki, H., Furube, A., and Katoh, R.: Nanoscale phase domain structure and associated device performance of organic solar cells based on a diketopyrrolopyrrole polymer. RSC Adv. 3, 20113 (2013).Google Scholar
17. Hendriks, K.H., Heintges, G.H.L., Gevaerts, V.S., Wienk, M.M., and Janssen, R.A.J.: High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew. Chem. 52, 8341 (2013).Google Scholar
18. Dou, L., Gao, J., Richard, E., You, J., Chen, C.-C., Cha, K.C., He, Y., Li, G., and Yang, Y.: Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J. Am. Chem. Soc. 134, 10071 (2012).Google Scholar
19. Li, W., Roelofs, W.S.C., Wienk, M.M., and Janssen, R.A.J.: Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control. J. Am. Chem. Soc. 134, 13787 (2012).Google Scholar
20. Dang, M.T., Wantz, G., Bejbouji, H., Urien, M., Dautel, O.J., Vignau, L., and Hirsch, L.: Polymeric solar cells based on P3HT:PCBM: role of the casting solvent. Sol. Energy Mater. Sol. Cells 95, 3408 (2011).CrossRefGoogle Scholar
21. Nicolet, C., Deribew, D., Renaud, C., Fleury, G., Brochon, C., Cloutet, E., Vignau, L., Wantz, G., Cramail, H., Geoghegan, M., and Hadziioannou, G.: Optimization of the bulk heterojunction composition for enhanced photovoltaic properties: correlation between the molecular weight of the semiconducting polymer and device Performance. J. Phys. Chem. B 115, 12717 (2011).Google Scholar
22. Wang, T., Dunbar, A.D.F., Staneic, P.A., Pearson, A.J., Hopkinson, P.E., MacDonald, J.E., Lilliu, S., Pizzey, C., Terrill, N.J., Donald, A.M., Ryan, A.J., Jones, R.A.L., and Lidzey, D.G.: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6, 4128 (2010).Google Scholar
23. Badrou Aïch, R., Zou, Y., Leclerc, M., and Tao, Y.: Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells. Org. Electron. 11, 1053 (2010).Google Scholar
24. Zoombelt, A.P., Mathijssen, S.G.J., Turbiez, M.G.R., Wienk, M.M., and Janssen, R.A.J.: Small band gap polymers based on diketopyrrolopyrrole. J. Mater. Chem. 20, 2240 (2010).Google Scholar
25. Hansson, R., Ericsson, L.K.E., Holmes, N.P., Rysz, J., Opitz, A., Campoy-Quiles, M., Wang, E., Barr, M.G., Kilcoyne, A.L.D., Zhou, X., Dastoor, P., and Moons, M.: Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC70BM blend. J. Mater. Chem. A 3, 6970 (2015).Google Scholar
26. Liu, F., Gu, Y., Wang, C., Zhao, W., Chen, D., Briseno, A.L., and Russell, T.P.: Efficient polymer solar cells based on a low bandgap semi-crystalline DPP polymer-PCBM blends. Adv. Mater. 24, 3947 (2012).CrossRefGoogle ScholarPubMed
27. Hopkinson, P.E., Staniec, P.A., Pearson, A.J., Dunbar, A.D.F., Wang, T., Ryan, A.J., Jones, R.A.L., Lidzey, D.G., and Donald, A.M.: A phase diagram of the P3HT:PCBM organic photovoltaic system: implications for device processing and performance. Macromolecules 44, 2908 (2011).CrossRefGoogle Scholar
28. Müller, C., Wang, E., Andersson, L.M., Tvingstedt, K., Zhou, Y., Andersson, M.R., and Inganäs, O.: Influence of molecular weight on the performance of organic solar cells based on a fluorene derivative. Adv. Funct. Mater. 20, 2124 (2010).Google Scholar
29. Bruner, C., Novoa, F., Dupont, S., and Dauskardt, R.: Decohesion kinetics in polymer organic solar cells. ACS Appl. Mater. Interfaces 6, 21474 (2014).Google Scholar
30. Lindqvist, C., Wang, E., Andersson, M.R., and Müller, C.: Facile monitoring of fullerene crystallization in polymer solar cell blends by UV–vis spectroscopy. Macromol. Chem. Phys. 215, 530 (2014).Google Scholar
31. Holmes, N.P., Marks, M., Kumar, P., Kroon, R., Barr, M.G., Nicolaidis, N., Feron, K., Pivrikas, A., Fahy, A., Diaz de Zerio Mendaza, A., Kilcoyne, A.L.D., Müller, C., Zhou, X., Andersson, M.R., Dastoor, P.C., Belcher, W.J.: Nano-pathways: bridging the divide between water-processable nanoparticulate and bulk heterojunction organic photovoltaics. Nano Energy 19, 495 (2016).Google Scholar
Supplementary material: File

Holmes supplementary material

Holmes supplementary material 1

Download Holmes supplementary material(File)
File 1.8 MB