Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-30T12:34:07.074Z Has data issue: false hasContentIssue false

Different hydrogel architectures synthesized by gamma radiation based on chitosan and N,N-dimethylacrylamide

Published online by Cambridge University Press:  23 April 2018

D. Tinoco
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMXMéxico
A. Ortega
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMXMéxico
G. Burillo*
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510, CDMXMéxico
L. Islas
Affiliation:
School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
L. García-Uriostegui
Affiliation:
CONACyT - Wood, Cellulose and Paper Research Department, University of Guadalajara, Guadalajara 44100, Jalisco, México
*
Address all correspondence to G. Burillo at [email protected]
Get access

Abstract

The present work focuses on the radiation-modification of chitosan (CS) with N,N-dimethylacrylamide (DMAAm) presented as three different architectures: comb-type grafting hydrogels (net-CS)-g-DMAAm, interpenetrating networks of CS and DMAAm (net-CS)-inter-(net-DMAAm), and semi-interpenetrating networks (net-DMAAm)-inter-CS. The syntheses of different polymeric architectures were realized by gamma irradiation by a 60Co source. The optimum conditions for the syntheses of the three systems were at a dose of 6 kGy. Only the comb-type system presented a well-defined critical pH. All the hydrogels showed porous and interconnected structures according to scanning electronic microscopy. These different architectures could be used as three-dimensional cell culture scaffolding.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kim, S.K.: Chitin and Chitosan: Advances in Drug Discovery and Developments. (CRC Press Taylor and Francis Group, Boca Raton, Chap 24, 2014).Google Scholar
2.Shia, Z., Neoha, K. G., Kanga, E. T., and Wang, W: Antibacterial and mechanical properties of bone cement impregnated with chitosan nanoparticles. Biomaterials 27, 2440 (2006).Google Scholar
3.Tan, L., Wan, A., and Li, H.: Fluorescent chitosan complex nanosphere diazeniumdiolates as donors and sensitive real-time probes of nitric oxide. Analyst. 138, 879 (2013).CrossRefGoogle ScholarPubMed
4.Wan, A., Sun, Y., Gao, L., and Li, H.: Preparation of aspirin and probucol in combination loaded chitosan nanoparticles and in vitro release study. Carbohydr. Polym. 75, 566 (2009).Google Scholar
5.Diekjürgen, D. and Grainger, D.W.: Polysaccharide matrices used in 3D in vitro cell culture systems, Biomaterials 141, 96 (2017).Google Scholar
6.Edmondson, R., Broglie, J. J., Adcock, A. F., and Yang, L.: Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay. Drug. Dev. Technol. 12, 207 (2014).Google Scholar
7.Breslin, S. and O'Driscoll, L.: Three-dimensional cell culture: the missing link in drug discovery. Drug. Discov. Today 18, 240 (2013).Google Scholar
8.Tibbitt, M. W. and Anseth, K. S.: Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103, 655 (2009).Google Scholar
9.Baker, B. M. and Chen, C. S.: Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell. Sci. 125, 3015 (2012).Google Scholar
10.Baser, B., Demirel, G.C., and Caykara, T.: DNA adsorption on Poly (N,N-dimethylacrylamide)-grafted chitosan hydrogels. J. Appl. Polym. Sci. 120, 1420 (2010).Google Scholar
11.Caliari, S.R. and Burdick, J.A.: A practical guide to hydrogels for cell culture. Nat. Methods 13, 405 (2016).Google Scholar
12.Choi, W-S., Ahn, K-J., Lee, D.W., Byun, M-W., and Park, H-J.: Preparation of chitosan oligomers by irradiation. Polym. Degrad. Stabil. 78, 533 (2002).CrossRefGoogle Scholar
13.Gryczka, U., Dondi, D., Chmielewski, A. G., Buttafava, A., and Faucitano, A.: The mechanism of chitosan degradation by gamma and electron beam irradiation. Radiat. Phys. Chem. 78, 543548 (2009).Google Scholar
14.Chmielewski, A. G.: Chitosan and radiation chemistry. Radiat. Phys. Chem. 79, 272275 (2010).CrossRefGoogle Scholar
15.Ramaprasad, A. T., Rao, V., Praveena, M., Sanjeev, G., Ramanani, S.P., and Sabharwal, S.: Preparation of crosslinked chitosan by electron beam irradiation in the presence of CCl4. J. Appl. Polym. Sci. 111, 1063 (2009).Google Scholar
16.Perez-Calixto, M. P., Ortega, A., García-Uriostegui, L., and Burillo, G., Synthesis and characterization of N-vinylcaprolactam/N,N-dimethylacrylamide grafted onto chitosan networks by gamma radiation. Rad. Chem. Phys. 119, 228 (2016).Google Scholar
17.Montes, J. A., Ortega, A., and Burillo, G.: Dual-stimuli responsive copolymers based on n-vinylcaprolactam/chitosan. J. Radioanal. Nucl. Chem. 303, 2143 (2015).Google Scholar
18.Cai, H., Zhang, Z. P., Ch. Sun, P., He, B. L., and Zhu, X. X.: Synthesis and characterization of thermo and pH sensitive hydrogels based on Chitosan-grafted N-isopropyl acrylamide via gamma radiation. Rad. Chem. Phys. 74, 26 (2005).Google Scholar
19.Casimiro, M.H., Gil, M.H., and Leal, J. P.: Drug release assays from chitosan/pHEMA membranes obtained by gamma irradiation. Nucl. Instrum. Method. B 265, 406 (2007).CrossRefGoogle Scholar
20.Singh, A., Narvi, S. S., Dutta, P.K., and Pandey, N.D.: External stimuli response on a novel chitosan hydrogel crosslinked with formaldehyde. Bull. Mater. Sci. 29, 233 (2006).CrossRefGoogle Scholar
21.Taşkın, P., Canısağ, H., and Şen, M.: The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiat. Phys. Chem. 94, 236239 (2014).Google Scholar