Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-30T05:24:31.445Z Has data issue: false hasContentIssue false

Determining the dielectric constant of injection-molded polymer-matrix nanocomposites filled with barium titanate

Published online by Cambridge University Press:  14 September 2020

Daniel Brito
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Guadalupe Quirarte
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Joshua Morgan
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Eleanor Rackoff
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Michael Fernandez
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Dithi Ganjam
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Albert Dato
Affiliation:
Department of Engineering, Harvey Mudd College, 301 Platt Blvd., Claremont, CA91711, USA
Todd C. Monson*
Affiliation:
Nanoscale Sciences Department, Sandia National Laboratories, 1515 Eubank Blvd., Albuquerque, NM87123, USA
*
Address all correspondence to Todd C. Monson at [email protected]
Get access

Abstract

Barium titanate (BTO) is a ferroelectric perovskite with potential in energy storage applications. Previous research suggests that BTO dielectric constant increases as nanoparticle diameter decreases. This report recounts an investigation of this relationship. Injection-molded nanocomposites of 5 vol% BTO nanoparticles incorporated in a low-density polyethylene matrix were fabricated and measured. Finite-element analysis was used to model nanocomposites of all BTO sizes and the results were compared with experimental data. Both indicated a negligible relationship between BTO diameter and dielectric constant at 5 vol%. However, a path for fabricating and testing composites of 30 vol% and higher is presented here.

Type
Research Letters
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cheballah, C., Valdez-Nava, Z., Laudebat, L., Lebey, T., Bidan, P., Diaham, S., and Guillemet-Fritsch, S.: Dielectric properties of colossal permittivity materials: An update. In Conference on electrical insulation and dielectric phenomena, CEIDP, 2011, pp. 706–709.10.1109/CEIDP.2011.6232754CrossRefGoogle Scholar
Krohns, S., Lunkenheimer, P., Meissner, S., Reller, A., Gleich, B., Rathgeber, A., Gaugler, T., Buhl, H.U., Sinclair, D.C., and Loidl, A.: The route to resource-efficient novel materials. Nat. Mater. 10, 899901 (2011).10.1038/nmat3180CrossRefGoogle ScholarPubMed
Yanbin, W., Jie, W., Yang, C., Wei, X., and Hao, J.: Colossal Permittivity Materials as Superior Dielectrics for Diverse Applications (John Wiley & Sons, Inc, New York, NY, USA, 2019).Google Scholar
Vijatovic Petrovic, M.M., Bobic, J.D., and Stojanovic, B.: History and challenges of barium titanate: Part II. Sci. Sinter. 40, 235244 (2008).10.2298/SOS0803235VCrossRefGoogle Scholar
Frey, M.H., Xu, Z., Han, P., and Payne, D.A.: The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206, 337353 (1998).10.1080/00150199808009168CrossRefGoogle Scholar
Wang, X., Deng, X., Wen, H., and Li, L.: Phase transition and high dielectric constant of bulk dense nanograin barium titanate ceramics. Appl. Phys. Lett. 89, 162902 (2006).10.1063/1.2363930CrossRefGoogle Scholar
Arlt, G., Hennings, D., and de With, G.: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 16191625 (1985).10.1063/1.336051CrossRefGoogle Scholar
Aygün, S., Ihlefeld, H., Borland, W., and Maria, J.P.: Permittivity scaling in Ba1− xSrxTiO3 thin films and ceramics. J. Appl. Phys. 109, 34108 (2011).10.1063/1.3514127CrossRefGoogle Scholar
Wada, S., Yasuno, H., Hoshina, T., Nam, S.M., Kakemoto, H., and Tsurumi, T.: Preparation of nm-sized barium titanate fine particles and their powder dielectric properties. Jpn. J. Appl. Phys. 42, 6188 (2003).10.1143/JJAP.42.6188CrossRefGoogle Scholar
Wada, S., Hoshina, T., Yasuno, H., Ohishi, M., Kakemoto, H., Tsurumi, T., and Yashima, M.: Size effect of dielectric properties for barium titanate particles and its model. Key Eng. Mater. 301, 2730 (2006).10.4028/www.scientific.net/KEM.301.27CrossRefGoogle Scholar
Balazs, A.C., Emrick, T., and Russell, T.P.: Nanoparticle polymer composites: Where two small worlds meet. Science 314, 11071110 (2006).10.1126/science.1130557CrossRefGoogle ScholarPubMed
Horton, J.M., Tang, S., Bao, C., Tang, P., Qiu, F., Zhu, L., and Zhao, B.: Truncated wedge-shaped nanostructures formed from lateral microphase separation of mixed homopolymer brushes grafted on 67 nm silica nanoparticles: Evidence of the effect of substrate curvature. ACS Macro Lett. 1, 10611065 (2012).10.1021/mz3003193CrossRefGoogle Scholar
Jancar, J., Douglas, J., Starr, F.W., Kumar, S., Cassagnau, P., Lesser, A., Sternstein, S.S., and Buehler, M.: Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51, 33213343 (2010).10.1016/j.polymer.2010.04.074CrossRefGoogle Scholar
Mackay, M.E., Tuteja, A., Duxbury, P.M., Hawker, C.J., Van Horn, B., Guan, Z., Chen, G., and Krishnan, R.: General strategies for nanoparticle dispersion. Science 311, 17401743 (2006).10.1126/science.1122225CrossRefGoogle ScholarPubMed
Padmanabhan, V., Frischknecht, A.L., and Mackay, M.E.: Effect of chain stiffness on nanoparticle segregation in polymer/nanoparticle blends near a substrate. Macromol. Theory Simul. 21, 98105 (2012).10.1002/mats.201100048CrossRefGoogle Scholar
Morgan Industries INC: Morgan Press G-100 T Instruction Manual, Ver. 1.1. Morgan Industries INC., Long Beach, CA, USA (2016).Google Scholar
Kaufman, J.L., Tan, S.H., Kirklann, L., Shah, A., Gambee, R.G., Gage, C., MacIntosh, L., Dato, A., Saeta, P.N., Haskell, R.C., and Monson, T.C.: Permittivity effects of particle agglomeration in ferroelectric ceramic-epoxy composites using finite element modelling. AIP Adv. 8, 125020 (1–16) (2018).10.1063/1.5053442CrossRefGoogle Scholar
Kerner, E.H.: The electrical conductivity of composite media. Proc. Phys. Soc., B 69, 802 (2002).10.1088/0370-1301/69/8/304CrossRefGoogle Scholar
Jayasundere, N. and Smith, B.V.: Dielectric constant for binary piezoelectric 0-3 composites. J. Appl. Phys. 73, 24622466 (1993).10.1063/1.354057CrossRefGoogle Scholar
Dabbak, S., Illias, H.A., Ang, B.C., Abdul Latiff, N.A., and Makmud, M.: Electrical properties of polyethylene/polypropylene compounds for high-voltage insulation. Energies 11, 1448 (2018).10.3390/en11061448CrossRefGoogle Scholar
Zhu, B.L., Zheng, H., Wang, J., Ma, J., Wu, J., and Wu, R.: Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos part B: Eng. 58, 91102 (2014).10.1016/j.compositesb.2013.10.029CrossRefGoogle Scholar
Supplementary material: File

Brito et al. supplementary material

Brito et al. supplementary material

Download Brito et al. supplementary material(File)
File 2.7 MB