Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T07:46:35.932Z Has data issue: false hasContentIssue false

Deciphering charge-storage mechanisms in 3D MnOx@carbon electrode nanoarchitectures for rechargeable zinc-ion cells

Published online by Cambridge University Press:  29 January 2019

Jesse S. Ko
Affiliation:
Naval Research Laboratory–National Research Council Postdoctoral Associate, Washington, DC, 20375, USA
Martin D. Donakowski
Affiliation:
Exponent, Inc., 9 Strathmore Road, Natick, Massachusetts, 01760, USA
Megan B. Sassin
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
Joseph F. Parker
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
Debra R. Rolison
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
Jeffrey W. Long*
Affiliation:
U.S. Naval Research Laboratory, Surface Chemistry Branch (Code 6170), Washington, DC, 20375, USA
*
Address all correspondence to Jeffrey W. Long at [email protected]
Get access

Abstract

We previously demonstrated that electrode architectures comprising nanoscale birnessite-like MnOx affixed to three-dimensional carbon nanofoam (CNF) scaffolds offer performance advantages when used as cathodes in rechargeable zinc-ion cells. To discern chemical and physical changes at the MnOx@CNF electrode upon deep charge/discharge in aqueous Zn2+-containing electrolytes, we deploy electroanalytical methods and ex situ characterization by microscopy, elemental analysis, x-ray photoelectron spectroscopy, x-ray diffraction, and x-ray pair distribution function analyses. Our findings verify that redox processes at the MnOx are accompanied by reversible precipitation/dissolution of crystalline zinc hydroxide sulfate (Zn4(OH)6(SO4xH2O), mediated by the more uniformly reactive electrode structure inherent to the CNF scaffold.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Xu, C., Li, B., Du, H., and Kang, F.: Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 51, 933935 (2012).Google Scholar
2.Guduru, R.K. and Icaza, J.C.: A brief review on multivalent intercalation batteries with aqueous electrolytes. Nanomaterials 6, 119 (2016).Google Scholar
3.Song, M., Tan, H., Chao, D., and Fan, H.J.: Recent advances in Zn-ion batteries. Adv. Funct. Mater. 28, 1802564 (2018).Google Scholar
4.Kundu, D., Adams, B.D., Duffort, V., Hosseini Vajargah, S., and Nazar, L.F.: A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 1, 16119 (2016).Google Scholar
5.Soundharrajan, V., Sambandam, B., Kim, S., Alfaruqi, M.H., Yunianto Putro, D., Jo, J., Kim, S., Mathew, V., Sun, Y.-K., and Kim, J.: Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 18, 24022410 (2018).Google Scholar
6.Kundu, D., Hosseini Vajargah, S., Wan, L., Adams, B., Prendergast, D., and Nazar, L.F.: Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 11, 881892 (2018).Google Scholar
7.Wei, C., Xu, C., Li, B., Du, H., and Kang, F.: Preparation and characterization of manganese dioxides with nano-sized tunnel structures for zinc ion storage. J. Phys. Chem. Solids 73, 14871491 (2012).Google Scholar
8.Lee, B., Yoon, C.S., Lee, H.R., Chung, K.Y., Cho, B.W., and Oh, S.H.: Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).Google Scholar
9.Alfaruqi, M.H., Gim, J., Kim, S., Song, J., Pham, D.T., Jo, J., Xiu, Z., Mathew, V., and Kim, J.: A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 60, 121125 (2015).Google Scholar
10.Alfaruqi, M.H., Mathew, V., Gim, J., Kim, S., Song, J., Baboo, J.P., Choi, S.H., and Kim, J.: Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 36093620 (2015).Google Scholar
11.Lee, B., Lee, H.R., Kim, H., Chung, K.Y., Cho, B.W., and Oh, S.H.: Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 92659268 (2015).Google Scholar
12.Alfaruqi, M.H., Gim, J., Kim, S., Song, J., Jo, J., Kim, S., Mathew, V., and Kim, J.: Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 288, 320327 (2015).Google Scholar
13.Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K.S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K.T., and Liu, J.: Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1, 16039 (2016).Google Scholar
14.Lee, B., Seo, H.R., Lee, H.R., Yoon, C.S., Kim, J.H., Chung, K.Y., Cho, B.W., and Oh, S.H.: Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries. ChemSusChem. 9, 29482956 (2016).Google Scholar
15.Sun, W., Wang, F., Hou, S., Yang, C., Fan, X., Ma, Z., Gao, T., Han, F., Hu, R., Zhu, M., and Wang, C.: Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 139, 97759778 (2017).Google Scholar
16.Ko, J.S., Sassin, M.B., Parker, J.F., Rolison, D.R., and Long, J.W.: Combining battery-like and pseudocapacitive charge storage in 3D MnOx@carbon electrode architectures for zinc-ion cells. Sustainable Energy Fuels 2, 626636 (2018).Google Scholar
17.Lytle, J.C., Wallace, J.M., Sassin, M.B., Barrow, A.J., Long, J.W., Dysart, J.L., Renninger, C.H., Saunders, M.P., Brandell, N.L., and Rolison, D.R.: The right kind of interior for multifunctional electrode architectures: carbon nanofoam papers with aperiodic submicrometre pore networks interconnected in 3D. Energy Environ. Sci. 4, 19131925 (2011).Google Scholar
18.Sassin, M.B., Hoag, C.P., Willis, B.T., Kucko, N.W., Rolison, D.R., and Long, J.W.: Designing high-performance electrochemical energy-storage nanoarchitectures to balance rate and capacity. Nanoscale 5, 16491657 (2013).Google Scholar
19.Fischer, A.E., Pettigrew, K.A., Rolison, D.R., Stroud, R.M., and Long, J.W.: Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. Nano Lett. 7, 281286 (2007).Google Scholar
20.Fischer, A.E., Saunders, M.P., Pettigrew, K.A., Rolison, D.R., and Long, J.W.: Electroless deposition of nanoscale MnO2 on ultraporous carbon nanoarchitectures: correlation of evolving pore-solid structure and electrochemical performance. J. Electrochem. Soc. 155, A246A252 (2008).Google Scholar
21.Chupas, P.J., Qui, X., Hanson, J.C., Lee, P.L., Grey, C.P., and Billinge, S.J.: Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Cryst. 36, 13421347 (2003).Google Scholar
22.Hammersley, A.P.: FIT2D: a multi-purpose data reduction, analysis and visualization program. J. Appl. Cryst. 49, 646652 (2016).Google Scholar
23.Farrow, C.L., Juhas, P., Liu, J.W., Bryndin, D., Boz˘in, E.S., Bloch, J., Profen, T., and Billinge:, S.J. PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter., 19, 335219 (2007).Google Scholar
24.Ko, J.S., Sassin, M.B., Rolison, D.R., and Long, J.W.: Deconvolving double-layer, pseudocapacitance, and battery-like charge-storage mechanisms in nanoscale LiMn2O4 at 3D carbon architectures. Electrochim. Acta 275, 225235 (2018).Google Scholar
25.Donakowski, M.D., Wallace, J.M., Sassin, M.B., Chapman, K.W., Parker, J.F., Long, J.W., and Rolison, D.R.: Crystal engineering in 3D: converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture. CrystEngComm 18, 60356048 (2016).Google Scholar
Supplementary material: PDF

Ko et al. supplementary material

Figures S1-S9 and Table S1

Download Ko et al. supplementary material(PDF)
PDF 1.3 MB