Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T07:31:33.860Z Has data issue: false hasContentIssue false

Composing molecular music with carbon

Published online by Cambridge University Press:  09 March 2015

Ashley J. Kocsis
Affiliation:
Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115
Steven W. Cranford*
Affiliation:
Laboratory of Nanotechnology in Civil Engineering (NICE), Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115
*
Address all correspondence to Steven W. Cranford at[email protected]
Get access

Abstract

What musical notes can a molecule play? Carbyne is a chain of atoms that vibrates similar to an elastic string. Like the tuning of a guitar string, this vibration can be predicted based on length and tension. Using atomistic simulation, we determine the vibrational response of carbyne. We further produce audible notes, enabling specific musical composition with prescribed molecular conditions (pre-strain and length) and combine single chains into multi-chain systems to form molecular chords. Since the tension of a molecular chain is relatively low (<nN), such “strings” can potentially be developed for signaling and detection with high resolution.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wilson, E.B., Cross, P.C., Decius, J.C.: Molecular vibrations: The theory of Infrared and Raman Vibrational Spectra. (Dover Publications, 1994).Google Scholar
2.Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P., Weierstall, U., Doak, R.B., Maia, F.R.N.C., Martin, A.V., Schlichting, I., Lomb, L., Coppola, N., Shoeman, R.L., Epp, S.W., Hartmann, R., Rolles, D., Rudenko, A., Foucar, L., Kimmel, N., Weidenspointner, G., Holl, P., Liang, M.N., Barthelmess, M., Caleman, C., Boutet, S., Bogan, M.J., Krzywinski, J., Bostedt, C., Bajt, S., Gumprecht, L., Rudek, B., Erk, B., Schmidt, C., Homke, A., Reich, C., Pietschner, D., Struder, L., Hauser, G., Gorke, H., Ullrich, J., Herrmann, S., Schaller, G., Schopper, F., Soltau, H., Kuhnel, K.U., Messerschmidt, M., Bozek, J.D., Hau-Riege, S.P., Frank, M., Hampton, C.Y., Sierra, R.G., Starodub, D., Williams, G.J., Hajdu, J., Timneanu, N., Seibert, M.M., Andreasson, J., Rocker, A., Jonsson, O., Svenda, M., Stern, S., Nass, K., Andritschke, R., Schroter, C.D., Krasniqi, F., Bott, M., Schmidt, K.E., Wang, X.Y., Grotjohann, I., Holton, J.M., Barends, T.R.M., Neutze, R., Marchesini, S., Fromme, R., Schorb, S., Rupp, D., Adolph, M., Gorkhover, T., Andersson, I., Hirsemann, H., Potdevin, G., Graafsma, H., Nilsson, B., and Spence, J.C.H.: Femtosecond X-ray protein nanocrystallography. Nature 470, 73 (2011).Google Scholar
3.Debus, C. and Bolivar, P.H.: Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91, 184102 (2007).Google Scholar
4.Crowe, T.W., Globus, T., Woolard, D.L., and Hesler, J.L.: Terahertz sources and detectors and their application to biological sensing. Philos. Trans. R. Soc. A 362, 365 (2004).CrossRefGoogle ScholarPubMed
5.Tonouchi, M.: Cutting-edge terahertz technology. Nat. Photonics 1, 97 (2007).Google Scholar
6.Ferguson, B. and Zhang, X.C.: Materials for terahertz science and technology. Nat. Mater. 1, 26 (2002).Google Scholar
7.Chartuprayoon, N., Zhang, M., Bosze, W., Choa, Y.-H., and Myung, N.V.: One-dimensional nanostructures based bio-detection. Biosens. Bioelectron. 63, 432 (2015).Google Scholar
8.Chenoweth, K., van Duin, A.C.T., and Goddard, W.A.: ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J. Phys. Chem. A 112, 1040 (2008).CrossRefGoogle ScholarPubMed
9.Liu, M., Artyukhov, V.I., Lee, H., Xu, F., and Yakobson, B.I.: Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano 7, 10075 (2013).CrossRefGoogle ScholarPubMed
10.Nair, A.K., Cranford, S.W., and Buehler, M.J.: The minimal nanowire: mechanical properties of carbyne. Epl-Europhys. Lett. 95, 16002 (2011).Google Scholar
11.Kocsis, A.J., Yedama, N.A.R., and Cranford, S.W.: Confinement and controlling the effective compressive stiffness of carbyne. Nanotechnology 25, 335709 (2014).Google Scholar
12.Jones, R.O. and Seifert, G.: Structure and bonding in carbon clusters C14 to C24: chains, rings, bowls, plates, and cages. Phys. Rev. Lett. 79, 443 (1997).CrossRefGoogle Scholar
13.Chalifoux, W.A. and Tykwinski, R.R.: Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat. Chem. 2, 967 (2010).Google Scholar
14.Jin, C.H., Lan, H.P., Peng, L.M., Suenaga, K., and Iijima, S.: Deriving carbon atomic chains from graphene. Phys. Rev. Lett. 102, 205501 (2009).Google Scholar
15.Chuvilin, A., Meyer, J.C., Algara-Siller, G., and Kaiser, U.: From graphene constrictions to single carbon chains. New J. Phys. 11, 083019 (2009).Google Scholar
16.Grimes, D.R.: String theory—the physics of string-bending and other electric guitar techniques. PLoS ONE 9, e102088 (2014).Google Scholar
17.Klapuri, A. and Davy, M.: Signal Processing Methods for Music Transcription (Springer, New York, 2006).Google Scholar
18.He, X., Fujimura, N., Lloyd, J.M., Erickson, K.J., Talin, A.A., Zhang, Q., Gao, W., Jiang, Q., Kawano, Y., Hauge, R.H., Léonard, F., and Kono, J.: Carbon nanotube terahertz detector. Nano Lett. 14, 3953 (2014).Google Scholar
19.Chowdhury, R., Adhikari, S., and Mitchell, J.: Vibrating carbon nanotube based bio-sensors. Physica E 42, 104 (2009).CrossRefGoogle Scholar
20.Cranford, S.W., Buehler, M.J. and SpringerLink (Online service): Biomateriomics, in Hull, R., Jagadish, C., Osgood, R.M., Parisi, J., Wang, Z., Springer Series in Materials Science (Springer, Netherlands: Imprint: Springer, Dordrecht, 2012), p. xvi.Google Scholar
21.Cranford, S.W.: Thermal stability of idealized folded carbyne loops. Nanoscale Res. Lett. 8, 490 (2013).Google Scholar
22.Humphrey, W., Dalke, A., and Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).Google Scholar

Kocsis and Cranford supplementary material

Supporting Audio File 1

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 2

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 3

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 4

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 5

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 6

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 7

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 8

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 9

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 10

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 11

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB

Kocsis and Cranford supplementary material

Supporting Audio File 12

Download Kocsis and Cranford supplementary material(Audio)
Audio 108.1 KB

Kocsis and Cranford supplementary material

Supporting Audio File 13

Download Kocsis and Cranford supplementary material(Audio)
Audio 796.6 KB

Kocsis and Cranford supplementary material

Supporting Audio File 14

Download Kocsis and Cranford supplementary material(Audio)
Audio 276.5 KB

Kocsis and Cranford supplementary material

Supporting Audio File 15

Download Kocsis and Cranford supplementary material(Audio)
Audio 100 KB
Supplementary material: PDF

Kocsis and Cranford supplementary material

Kocsis and Cranford supplementary material 1

Download Kocsis and Cranford supplementary material(PDF)
PDF 90 KB