Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-30T07:42:50.275Z Has data issue: false hasContentIssue false

Colon cancer cells adhesion on polymeric nanostructured surfaces

Published online by Cambridge University Press:  11 December 2017

Angelo Accardo*
Affiliation:
LAAS-CNRS, Université de Toulouse, CNRS, 7 Avenue du Colonel Roche, Toulouse, F-31400, France
Victoria Shalabaeva
Affiliation:
Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
Rosanna La Rocca
Affiliation:
Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
*
Address all correspondence to Angelo Accardo at [email protected]
Get access

Abstract

In this work, we report on the adhesion of HCT116 (human colon carcinoma cells) cultured on nanofibrillar polymethylmethacrylate (PMMA) and SU-8 micropillars substrates. Both surfaces enabled a good cell proliferation and promoted the formation of adherent interconnections with the fabricated nano- and microstructures. The three-dimensional immunofluorescence confocal characterization of the cells on nanotextured PMMA highlighted the expression of well-spread F-actin cytoskeletal networks as well as the presence of focal adhesions. This study provides thus interesting perspectives for further investigations on the force/adhesion mechanisms related to cancer cell growth and proliferation.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Luong-Van, E., Rodriguez, I., Low, H.Y., Elmouelhi, N., Lowenhaupt, B., Natarajan, S., Lim, C.T., Prajapati, R., Vyakarnam, M., and Cooper, K.: Review: micro- and nanostructured surface engineering for biomedical applications. J. Mater. Res. 28, 165 (2013).Google Scholar
2. Accardo, A., Di Fabrizio, E., Limongi, T., Marinaro, G., and Riekel, C.: Probing droplets on superhydrophobic surfaces by synchrotron radiation scattering techniques. J. Synchrotron Radiat. 21, 643 (2014).Google Scholar
3. Accardo, A., Burghammer, M., Di Cola, E., Reynolds, M., Di Fabrizio, E., and Riekel, C.: Lysozyme fibrillation induced by convective flow under quasi contact-free conditions. Soft Mat. 7, 6792 (2011).Google Scholar
4. Accardo, A., Shalabaeva, V., Di Cola, E., Burghammer, M., Krahne, R., Riekel, C., and Dante, S.: Superhydrophobic surfaces boost fibril self-assembly of amyloid β peptides. ACS Appl. Mater. Interfaces 7, 20875 (2015).Google Scholar
5. Accardo, A., Trevisiol, E., Cerf, A., Thibault, C., Laurell, H., Buscato, M., Lenfant, F., Arnal, J.-F., Fontaine, C., and Vieu, C.: Versatile multi-characterization platform involving tailored superhydrophobic SU-8 micropillars for the investigation of breast cancer estrogen receptor isoforms. J. Vac. Sci. Technol. B 34, 06K201 (2016).CrossRefGoogle Scholar
6. Accardo, A., Tirinato, L., Altamura, D., Sibillano, T., Giannini, C., Riekel, C., and Di Fabrizio, E.: Superhydrophobic surfaces allow probing of exosome self organization using X-ray scattering. Nanoscale 5, 2295 (2013).Google Scholar
7. Ayala-Caminero, R., Pinzón-Herrera, L., Rivera Martinez, C.A., and Almodovar, J.: Polymeric scaffolds for three-dimensional culture of nerve cells: a model of peripheral nerve regeneration. MRS Commun. 7, 391 (2017).Google Scholar
8. Accardo, A., Blatché, M.C., Courson, R., Loubinoux, I., Thibault, C., Malaquin, L., and Vieu, C.: Multiphoton direct laser writing and 3D imaging of polymeric freestanding architectures for cell colonization. Small 13, 1700621 (2017).Google Scholar
9. Pedron, S., Polishetty, H., Pritchard, A.M., Mahadik, B.P., Sarkaria, J.N., and Harley, B.A.C.: Spatially graded hydrogels for preclinical testing of glioblastoma anticancer therapeutics. MRS Commun. 7, 442 (2017).CrossRefGoogle ScholarPubMed
10. Swaminathan, V., Mythreye, K., Tim O'Brien, E., Berchuck, A., Blobe, G.C., and Superfine, R.: Mechanical Stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 71, 5075 (2011).Google Scholar
11. Gentile, F., Tirinato, L., Battista, E., Causa, F., Liberale, C., di Fabrizio, E.M., and Decuzzi, P.: Cells preferentially grow on rough substrates. Biomaterials 31, 7205 (2010).Google Scholar
12. Zhu, P., Zhao, N., Sheng, D., Hou, J., Hao, C., Yang, X., Zhu, B., Zhang, S., Han, Z., Wei, L., and Zhang, L.: Inhibition of growth and metastasis of colon cancer by delivering 5-fluorouracil-loaded pluronic P85 copolymer micelles. Sci. Rep. 6, 20896 (2016).CrossRefGoogle ScholarPubMed
13. Huang, X., Greve, D.W., Nausieda, I., Nguyen, D., and Domach, M.M.: Impedance-based biosensors. MRS Proc. 820, O9.7 (2004).Google Scholar
14. Marinaro, G., Accardo, A., De Angelis, F., Dane, T., Weinhausen, B., Burghammer, M., and Riekel, C.: A superhydrophobic chip based on SU-8 photoresist pillars suspended on a silicon nitride membrane. Lab. Chip 14, 3705 (2014).Google Scholar
15. Phan, L.T., Yoon, S.M., and Moon, M.W.: Plasma-based nanostructuring of polymers: a review. Polymers 9, 417 (2017).Google Scholar
16. Jacquemet, G., Hamidi, H., and Ivaska, J.: Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36, 23 (2015).CrossRefGoogle ScholarPubMed
17. Mattila, P.K. and Lappalainen, P.: Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446 (2008).Google Scholar
18. Ziegler, W.H., Liddington, R.C., and Critchley, D.R.: The structure and regulation of vinculin. Trends Cell Biol. 16, 453 (2006).Google Scholar
19. Carisey, A. and Ballestrem, C.: Vinculin, an adapter protein in control of cell adhesion signalling. Eur. J. Cell Biol. 90, 157 (2011).CrossRefGoogle ScholarPubMed
20. Nikkhah, M., Edalat, F., Manoucheri, S., and Khademhosseini, A.: Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33, 5230 (2012).Google Scholar
21. Baldo, C., Lopes, D.S., Faquim-Mauro, E.L., Jacysyn, J.F., Niland, S., Eble, J.A., Clissa, P.B., and Moura-Da-Silva, A.M.: Jararhagin disruption of endothelial cell anchorage is enhanced in collagen enriched matrices. Toxicon 108, 240 (2015).Google Scholar
22. Bacakova, L., Filova, E., Parizek, M., Ruml, T., and Svorcik, V.: Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 29, 739 (2011).Google Scholar
23. Kim, J.H., Seo, S., and Min, J.: Epithelial cell patterns on a PDMS polymer surface using a micro plasma structure. J. Biotechnol. 155, 308 (2011).Google Scholar
24. Borges, A.M.G., Benetoli, L.O., Licínio, M.A., Zoldan, V.C., Santos-Silva, M.C., Assreuy, J., Pasa, A.A., Debacher, N.A., and Soldi, V.: Polymer films with surfaces unmodified and modified by non-thermal plasma as new substrates for cell adhesion. Mater. Sci. Eng. C, Mater. Biol. Appl. 33, 1315 (2013).Google Scholar
25. Ozcan, C. and Hasirci, N.: Plasma modification of PMMA films: surface free energy and cell-attachment studies. J. Biomater. Sci. Polym. Ed. 18, 759 (2007).CrossRefGoogle ScholarPubMed
26. Ozcan, C., Zorlutuna, P., Hasirci, V., and Hasirci, N.: Influence of oxygen plasma modification on surface free energy of PMMA films and cell attachment. Macromol. Symp. 269, 128 (2008).Google Scholar
27. Cesca, F., Limongi, T., Accardo, A., Rocchi, A., Orlando, M., Shalabaeva, V., Di Fabrizio, E., and Benfenati, F.: Fabrication of biocompatible free-standing nanopatterned films for primary neuronal cultures. RSC Adv. 4, 45696 (2014).Google Scholar
28. Biggs, M.J.P., Richards, R.G., and Dalby, M.J.: Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine 6, 619 (2010).Google Scholar
29. Kai, K., Nagano, O., Sugihara, E., Arima, Y., Sampetrean, O., Ishimoto, T., Nakanishi, M., Ueno, N.T., Iwase, H., and Saya, H.: Maintenance of HCT116 colon cancer cell line conforms to a stochastic model but not a cancer stem cell model. Cancer Sci. 100, 2275 (2009).Google Scholar
30. Golubovskaya, V.M., Kweh, F.A., and Cance, W.G.: Focal adhesion kinase and cancer. Histol. Histopathol. 24, 503 (2009).Google Scholar
Supplementary material: PDF

Accardo et al supplementary material

Accardo et al supplementary material 1

Download Accardo et al supplementary material(PDF)
PDF 369.3 KB