Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T07:48:03.302Z Has data issue: false hasContentIssue false

Characterization of interface thermal resistance between graphene and Cu film by using a micropipette thermography technique

Published online by Cambridge University Press:  03 December 2018

Jae Young Jeong
Affiliation:
Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76207, USA
Kyle Horne
Affiliation:
Department of Mechanical engineering, University of Wisconsin-Platteville, Platteville, WI 53818, USA
Bohung Kim
Affiliation:
School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan 680-749, South Korea
Dongsik Kim
Affiliation:
Department of Mechanical Engineering, Postech, Pohang 37673, Korea
Tae-Youl Choi*
Affiliation:
Department of Mechanical and Energy Engineering, University of North Texas, Denton, TX 76207, USA
*
Address all correspondence to Tae-Youl Choi at [email protected], web site: http://engineering.unt.edu/mechanicalandenergy
Get access

Abstract

We have investigated interfacial thermal resistance (ITR) between single-layer graphene and Cu substrate by using both experimental and numerical methods. For experiments, the micropipette sensing technique was utilized to measure the thermal conductivity of suspended graphene and temperature profile of supported graphene on Cu film subjected to heating with a point source continuous wave laser. The thermal conductivity of suspended single-layer graphene was measured to be 3492 ± 453 W/m°C from measurements of temperature profile on the suspended graphene. This intrinsic graphene thermal conductivity and the finite element method integrated with a multi-parameter fitting technique were used to estimate ITR between graphene and Cu film. In the multi-parameter fitting technique, the simulated temperature profile is compared with experimentally measured temperature profile on the supported graphene surface and the best-fitted parameters including thermal interface resistance was obtained. The estimated interface thermal resistance between single graphene and Cu substrate is 2.3 × 10−7 m2 K/W and the difference between experiment and simulation result during multi-parameter fitting is 6.9%.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M., and Geim, A.K.: Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008).10.1126/science.1156965Google Scholar
2.Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J.A., and Geim, A.: Giant intrinsic carrier mobilities in graphene and its bilayer. Phy. Rev. Lett. 100, 016602 (2008).10.1103/PhysRevLett.100.016602Google Scholar
3.Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).10.1126/science.1157996Google Scholar
4.Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., and Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008).10.1021/nl0731872Google Scholar
5.Ghosh, D., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., and Lau, C.N.: Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. App. Phy. Lett. 92, 151911 (2008).10.1063/1.2907977Google Scholar
6.Chen, S., Wu, Q., Mishra, C., Kang, J., Zhang, H., Cho, K., Cai, W., Balandin, A.A., and Ruoff, R.S.: Thermal conductivity of isotopically modified graphene. Nat. Mater. 11, 203 (2012).10.1038/nmat3207Google Scholar
7.Wang, Z., Xie, R., Bui, C.T., Liu, D., Ni, X., Li, B., and Thong, J.T.: Thermal transport in suspended and supported few-layer graphene. Nano Lett. 11, 113 (2010).10.1021/nl102923qGoogle Scholar
8.Fugallo, G., Cepellotti, A., Paulatto, L., Lazzeri, M., Marzari, N., and Mauri, F.: Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14, 6109 (2014).10.1021/nl502059fGoogle Scholar
9.Yue, Y., Zhang, J., and Wang, X.: Micro/Nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC. Small 7, 3324 (2011).10.1002/smll.201101598Google Scholar
10.Koh, Y.K., Bae, M.-H., Cahill, D.G., and Pop, E.: Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363 (2010).10.1021/nl101790kGoogle Scholar
11.Chen, Z., Jang, W., Bao, W., Lau, C., and Dames, C.: Thermal contact resistance between graphene and silicon dioxide. App. Phy. Lett. 95, 161910 (2009).10.1063/1.3245315Google Scholar
12.Mao, R., Kong, B.D., Kim, K.W., Jayasekera, T., Calzolari, A., and Buongiorno Nardelli, M.: Phonon engineering in nanostructures: Controlling interfacial thermal resistance in multilayer-graphene/dielectric heterojunctions. App. Phy. Lett. 101, 113111 (2012).10.1063/1.4752437Google Scholar
13.Luo, T., and Lloyd, J.R.: Enhancement of thermal energy transport across graphene/graphite and polymer interfaces: a molecular dynamics study. Adv. Func. Mater. 22, 2495 (2012).10.1002/adfm.201103048Google Scholar
14.Shrestha, R., Lee, K., Chang, W., Kim, D., Rhee, G., and Choi, T.: Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor. Rev. Sci. Instr. 84, 034901 (2013).10.1063/1.4792841Google Scholar
15.Jeong, J., Lee, K., Shrestha, R., Horne, K., Das, S., Choi, W., Kim, M., and Choi, T.: Thermal conductivity measurement of few layer graphene film by a micropipette sensor with laser point heating source. Mater. Res. Exp. 3, 055004 (2016).10.1088/2053-1591/3/5/055004Google Scholar
16.Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E.: Convergence properties of the Nelder--Mead simplex method in low dimensions. SIAM J. Opt. 9, 112 (1998).10.1137/S1052623496303470Google Scholar
17.Holman, J.P., and Gajda, W.J.: Experimental Methods For Engineers (McGraw-Hill, New York 2001).Google Scholar
18.Moftakhari, A., Aghanajafi, C., and Moftakhari Chaei Ghazvin, A.: Inverse heat transfer analysis of radiator central heating systems inside residential buildings using sensitivity analysis. Inv. Prob. Sci. Eng. 25, 580 (2017).10.1080/17415977.2016.1178258Google Scholar
19.Ferrari, A.C., Meyer, J., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K., and Roth, S.: Raman spectrum of graphene and graphene layers. Phy. Rev. Lett. 97, 187401 (2006).10.1103/PhysRevLett.97.187401Google Scholar
20.Serov, A.Y., Ong, Z.-Y., and Pop, E.: Effect of grain boundaries on thermal transport in graphene. App. Phy. Lett. 102, 033104 (2013).10.1063/1.4776667Google Scholar
21.Limbu, T.B., Hahn, K.R., Mendoza, F., Sahoo, S., Razink, J.J., Katiyar, R.S., Weiner, B.R., and Morell, G.: Grain size-dependent thermal conductivity of polycrystalline twisted bilayer graphene. Carbon. N. Y. 117, 367 (2017).10.1016/j.carbon.2017.02.066Google Scholar
22.Hao, F., Fang, D., and Xu, Z.: Mechanical and thermal transport properties of graphene with defects. App. Phy. Lett. 99, 041901 (2011).10.1063/1.3615290Google Scholar
23.Chien, S.-K. and Yang, Y.-T.: Influence of chemisorption on the thermal conductivity of graphene nanoribbons. Carbon. N. Y. 50, 421 (2012).10.1016/j.carbon.2011.08.056Google Scholar
24.Alemán, B., Regan, W., Aloni, S., Altoe, V., Alem, N., Girit, C.l, Geng, B., Maserati, L., Crommie, M., and Wang, F.: Transfer-free batch fabrication of large-area suspended graphene membranes. ACS Nano 4, 4762 (2010).10.1021/nn100459uGoogle Scholar
Supplementary material: File

Jeong et al. supplementary material

Jeong et al. supplementary material 1

Download Jeong et al. supplementary material(File)
File 138.3 KB