Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-06T01:00:19.719Z Has data issue: false hasContentIssue false

Cerium silicate-based thin-film apatites: high conductivity and solid oxide fuel cell application

Published online by Cambridge University Press:  20 April 2017

Sunghwan Lee*
Affiliation:
Department of Mechanical Engineering, Baylor University, Waco, TX 76798, USA John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
Xiaofei Guan
Affiliation:
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
*
Address all correspondence to Sunghwan Lee at [email protected]
Get access

Abstract

We report on the intermediate-temperature synthesis (973 K) and operation (<750 K) of Ce4.67(SiO4)3O-based thin-film oxy-apatites. The apatite thin films show the high conductivity of ~0.05–0.5 S/cm and excellent stability in reducing atmosphere (<10−17 atm), which makes promising these materials as anodes for intermediate-temperature solid oxide fuel cell (SOFC) application. The proto-type SOFCs implementing single-layer apatite and apatite/Pt bilayer anodes were fabricated and the resulting performance (e.g., peak power density of ~5 mW/cm2 at 748 K) presents notable feasibility of ZCS-based oxy-apatite anodes for thin-film SOFC devices.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakayama, S., Sakamoto, M., Higuchi, M., Kodaira, K., Sato, M., Kakita, S., Suzuki, T., and Itoh, K.: Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal. J. Eur. Ceram. Soc. 19, 507 (1999).Google Scholar
2. Karthikeyan, A., Tsuchiya, M., and Ramanathan, S.: Apatite-phase synthesis from interdiffusion in doped CeO(2)-SiO(2) thin-film superlattices and in situ conductivity studies. Electrochem. Solid State Lett. 11, K101 (2008).Google Scholar
3. Beaudet-Savignat, S., Vincent, A., Lambert, S. and Gervais, F.: Oxide ion conduction in Ba, Ca and Sr doped apatite-type lanthanum silicates. J. Mater. Chem. 17, 2078 (2007).Google Scholar
4. Kendrick, E., Islam, M.S. and Slater, P.R.: Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties. J. Mater. Chem. 17, 3104 (2007).Google Scholar
5. Skinner, S.J. and Kilner, J.A.: Oxygen ion conductors. Mater. Today 6, 30 (2003).Google Scholar
6. Kuang, X., Green, M.A., Niu, H., Zajdel, P., Dickinson, C., Claridge, J.B., Jantsky, L., and Rosseinsky, M.J.: Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat. Mater. 7, 498 (2008).Google Scholar
7. Leon-Reina, L., Losilla, E.R., Martinez-Lara, M., Bruque, S., and Aranda, M.A.G.: Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. J. Mater. Chem. 14, 1142 (2004).Google Scholar
8. Leon-Reina, L., Porras-Vazquez, J.M., Losilla, E.R., and Aranda, M.A.G.: Interstitial oxide positions in oxygen-excess oxy-apatites. Solid State Ion. 177, 1307 (2006).Google Scholar
9. Porras-Vazquez, J.M., Losilla, E.R., Leon-Reina, L., Marrero-Lopez, D., and Aranda, M.A.G.: Microstructure and oxide ion conductivity in a dense La9.33(SiO4)6O2 oxy-apatite. J. Am. Ceram. Soc. 92, 1062 (2009).Google Scholar
10. Xiang, J., Liu, Z.-G., Ouyang, J.-H., and Yan, F.-Y.: Ionic conductivity of oxy-apatite La10Si6−xInxO27-delta solid electrolyte ceramics. J. Power Sources 251, 305 (2014).Google Scholar
11. Nakayama, S., Kageyama, T., Aono, H., and Sadaoka, Y.: Ionic-conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J. Mater. Chem. 5, 1801 (1995).Google Scholar
12. Risbud, A.S., Helean, K.B., Wilding, M.C., Lu, P., and Navrotsky, A.: Enthalpies of formation of lanthanide oxyapatite phases. J. Mater. Res. 16, 2780 (2001).Google Scholar
13. Lee, S., Guan, X., and Ramanathan, S.: Thin film oxy-apatite anodes for solid oxide fuel cells. J. Electrochem. Soc. 163, F719 (2016).CrossRefGoogle Scholar
14. Jiang, J., Guan, X.F., Lattimer, J., Friend, C., Verma, A., Tsuchiya, M., and Ramanathan, S.: Experimental investigation into tungsten carbide thin films as solid oxide fuel cell anodes. J. Mater. Res. 31, 3050 (2016).Google Scholar
15. Oka, N., Kimura, K., Yagi, T., Taketoshi, N., Baba, T., and Shigesato, Y.: Thermophysical and electrical properties of Al-doped ZnO films. J. Appl. Phys. 111, 093701 (2012).CrossRefGoogle Scholar
16. Lee, S., Kim, S.-H., Kim, Y., Kingon, A.I., Paine, D.C., and No, K.: Structural and electrical properties of transparent conducting Al2O3-doped ZnO thin films using off-axis DC magnetron sputtering. Mater. Lett. 85, 88 (2012).Google Scholar
17. Hong, J., Paik, H., Hwang, H., Lee, S., deMello, A.J., and No, K.: The effect of growth temperature on physical properties of heavily doped ZnO:Al films. Phys. Status Solidi A – Appl. Mater. Sci. 206, 697 (2009).Google Scholar
18. Streetman, B.G. and Banerjee, S.K.: Solid State Electronic Devices, 6th ed. (Pearson-Prentice-Hall, New York, 2006).Google Scholar
19. Chiang, Y.M., Birnie, D.P., and Kingery, W.D.: Physical Ceramics: Principles for Ceramic Science and Engineering (Wiley, New York, 1996).Google Scholar
20. Lee, S. and Paine, D.C.: Identification of the native defect doping mechanism in amorphous indium zinc oxide thin films studied using ultra high pressure oxidation. Appl. Phys. Lett. 102, 052101 (2013).Google Scholar
21. Panteix, P.J., Julien, I., Bernache-Assollant, D., and Abelard, P.: Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC. Mater. Chem. Phys. 95, 313 (2005).Google Scholar
22. Teterskii, A.V., Stefanovich, S.Y., and Turova, N.Y.: Sol-gel synthesis of oxygen-ion conductors based on apatite-structure silicates and silicophosphates. Inorg. Mater. 42, 294 (2006).Google Scholar
23. Yoshioka, H.: Enhancement of ionic conductivity of apatite-type lanthanum silicates doped with cations. J. Am. Ceram. Soc. 90, 3099 (2007).Google Scholar
24. Nakayama, S., Kageyama, T., Aono, H., and Sadaoka, Y.: Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb). J. Mater. Chem. 5, 1801 (1995).Google Scholar
25. Takagi, Y., Lai, B.-K., Kerman, K., and Ramanathan, S.: Low temperature thin film solid oxide fuel cells with nanoporous ruthenium anodes for direct methane operation. Energy Environ. Sci. 4, 3473 (2011).Google Scholar
26. Kerman, K., Lai, B.K., and Ramanathan, S.: Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2, 656 (2012).Google Scholar
27. O'Hayre, R., Cha, S.W., Prinz, F.B., and Colella, W.: Fuel Cell Fundamentals (Wiley, Hoboken, New Jersey, 2016).Google Scholar
28. Haile, S.M.: Fuel cell materials and components. Acta Mater. 51, 5981 (2003).Google Scholar
29. Cooper, M., Channa, K., De Silva, R., and Bayless, D.J.: Comparison of LSV/YSZ and LSV/GDC SOFC anode performance in coal Syngas containing H2S. J. Electrochem. Soc. 157, B1713 (2010).Google Scholar
30. Sun, C., Hui, R., and Roller, J.: Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125 (2010).Google Scholar
31. Yoshioka, H., Mitsui, T., Mineshige, A., and Yazawa, T.: Fabrication of anode supported SOFC using plasma-sprayed films of the apatite-type lanthanum silicate as an electrolyte. Solid State Ion. 181, 1707 (2010).Google Scholar