Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T10:42:21.306Z Has data issue: false hasContentIssue false

Cellulose-based electroactive hydrogels for seaweed mimicking toward hybrid artificial habitats creation

Published online by Cambridge University Press:  15 August 2018

Lorenzo Migliorini
Affiliation:
Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
Yunsong Yan
Affiliation:
CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
Federico Pezzotta
Affiliation:
CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
Francesca Maria Sole Veronesi
Affiliation:
CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
Cristina Lenardi
Affiliation:
CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
Sandra Rondinini
Affiliation:
Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milan, Italy
Tommaso Santaniello*
Affiliation:
CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
Paolo Milani*
Affiliation:
CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133, Milan, Italy
*
Address all correspondence to Tommaso Santaniello at [email protected] and Paolo Milani at [email protected]
Address all correspondence to Tommaso Santaniello at [email protected] and Paolo Milani at [email protected]
Get access

Abstract

We present the synthesis and the characterization of a novel cellulose-based electroactive hydrogel obtained through a simple water-based process. Its swelling and electroactive properties are here studied especially in low salinity water solutions. By combining smart materials and three-dimensional printing technique, we assessed that hydrogels can be shaped as natural algae and their motion can be controlled with electric signals to mimic natural seaweed movements under the effect of water flow. This could constitute a first step toward the development of hybrid habitats where artificial smart algae could cohabit with real living organisms or microorganisms.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to the work.

References

1.Maréchal, J. P. and Hellio, C.: Challenges for the development of new non-toxic antifouling solutions. Int. J. Mol. Sci. 10, 46234637 (2009).Google Scholar
2.Chapman, J., Hellio, C., Sullivan, T., Brown, R., Russell, S., Kiterringham, E., Le Nor, L., and Regan, F.: Bioinspired synthetic macroalgae: examples from nature for antifouling applications. Int. Biodeterior. Biodegrad. 86, 613 (2014).Google Scholar
3.Tamiya, H.: Mass culture of Algae. Annu. Rev. Plant Physiol. J. 8, 309344 (1957).Google Scholar
4.Edgar, G. J.: Artificial algae as habitats for mobile epifauna: factors affecting colonization in a Japanese Sargassum bed. Hydrobiologia 226, 111118 (1991).Google Scholar
5.Uymaz, S. A., Tezel, G., and Yel, E.: Artificial algae algorithm (AAA) for nonlinear global optimization. Appl. Soft Comput. J. 31, 153171 (2015).Google Scholar
6.Ryder, E., Nelson, S. G., McKeon, C., Glenn, E. P., Fitzsimmons, K., and Napolean, S.: Effect of water motion on the cultivation of the economic seaweed Gracilaria parvispora (Rhodophyta) on Molokai, Hawaii. Aquaculture 238, 207219 (2004).Google Scholar
7.Peteiro, C. and Freire, Ó.: Effect of water motion on the cultivation of the commercial seaweed Undaria pinnatifida in a coastal bay of Galicia, Northwest Spain. Aquaculture 314, 269276 (2011).Google Scholar
8.Hepburn, C. D., Holborow, J. D., Wing, S. R., Frew, R. D., and Hurd, C. L.: Exposure to waves enhances the growth rate and nitrogen status of the giant kelp Macrocystis pyrifera. Mar. Ecol. Prog. Ser. 339, 99108 (2007).Google Scholar
9.Hurd, C. L.: Water motion, marine macroalgal physiology, and production. J. Phycol. 36, 453472 (2000).Google Scholar
10.Olanrewaju, S. O., Magee, A., Kader, A. S. A., and Tee, K. F.: Simulation of offshore aquaculture system for macro algae (seaweed) oceanic farming. Ships Offshore Struct. 12, 553562 (2017).Google Scholar
11.Leigh, E. G., Paine, R. T., Quinn, J. F., and Suchanek, T. H.: Wave energy and intertidal productivity. Proc. Natl. Acad. Sci. 84, 13141318 (1987).Google Scholar
12.Gonen, Y., Kimmel, E., and Friedlander, M.: Diffusion boundary layer transport in Gracilaria conferta (Rhodophyta). J. Phycol. 31, 768773 (1995).Google Scholar
13.Hoffman, A. S.: Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 1823 (2012).Google Scholar
14.Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv. Mater. 18, 13451360 (2006).Google Scholar
15.Lee, K. Y. and Mooney, D. J.: Hydrogels for tissue engineering. Chem. Rev. 101, 18691879 (2001).Google Scholar
16.Doi, M., Matsumoto, M., and Hirose, Y.: Deformation of ionic polymer gels by electric fields. Macromolecules 25, 55045511 (1992).Google Scholar
17.Glazer, P. J., Van Erp, M., Embrechts, A., Lemay, S. G., and Mendes, E.: Role of pH gradients in the actuation of electro-responsive polyelectrolyte gels. Soft Matter 8, 44214426 (2012).Google Scholar
18.Kwon, G. H., Choi, Y. Y., Park, J. Y., Woo, D. H., Lee, K. B., Kim, J. H., and Lee, S. H.: Electrically-driven hydrogel actuators in microfluidic channels: fabrication, characterization, and biological application. Lab. Chip. 10, 16041610 (2010).Google Scholar
19.Jin, S., Gu, J., Shi, Y., Shao, K., Yu, X., and Yue, G.: Preparation and electrical sensitive behavior of poly (N-vinylpyrrolidone-co-acrylic acid) hydrogel with flexible chain nature. Eur. Polym. J. 49, 18711880 (2013).Google Scholar
20.Engel, L., Berkh, O., Adesanya, K., Shklovsky, J., Vanderleyden, E., Dubruel, P., Shacham-Diamand, Y., and Krylov, S.: Actuation of a novel pluronic-based hydrogel: electromechanical response and the role of applied current. Sens. Actuators B Chem. 191, 650658 (2014).Google Scholar
21.Migliorini, L., Santaniello, T., Yan, Y., Lenardi, C., and Milani, P.: Low-voltage electrically driven homeostatic hydrogel-based actuators for underwater soft robotics. Sens. Actuators B Chem. 228, 758766 (2016).Google Scholar
22.Santaniello, T., Migliorini, L., Locatelli, E., Monaco, I., Yan, Y., Lenardi, C., Comes Franchini, M., and Milani, P.: Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro–mechanical underwater actuation. Smart Mater. Struct. 26, 085030 (2017).Google Scholar
23.Jayaramudu, T., Ko, H. U., Kim, H. C., Kim, J. W., Li, Y., and Kim, J.: Transparent and semi-interpenetrating network P(vinyl alcohol)-P(Acrylic acid) hydrogels: pH responsive and electroactive application. Int. J. Smart Nano Mater. 8, 8094 (2017).Google Scholar
24.Fu, F., Shang, L., Chen, Z., Yu, Y., and Zhao, Y.: Bioinspired living structural color hydrogels. Sci. Robot. 3, eaar8580 (2018).Google Scholar
25.Tian, K., Shao, Z., and Chen, X.: Natural electroactive hydrogel from soy protein isolation. Biomacromolecules 11, 36383643 (2010).Google Scholar
26.Chang, C. and Zhang, L.: Cellulose-based hydrogels: present status and application prospects. Carbohydr. Polym. 84, 4053 (2011).Google Scholar
Supplementary material: File

Migliorini et al. supplementary material

Migliorini et al. supplementary material 1

Download Migliorini et al. supplementary material(File)
File 23.8 MB