Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-30T07:34:38.123Z Has data issue: false hasContentIssue false

Biomaterial-based strategies for the engineering of mechanically active soft tissues

Published online by Cambridge University Press:  26 March 2012

Zhixiang Tong
Affiliation:
Department of Materials Science and Engineering, Biomedical Engineering Program, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716
Xinqiao Jia*
Affiliation:
Department of Materials Science and Engineering, Biomedical Engineering Program, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716
*
Address all correspondence to Xinqiao Jia at [email protected]
Get access

Abstract

Load-bearing, mechanically active tissues are routinely subjected to nonlinear mechanical deformations. Consequently, these tissues exhibit complex mechanical properties and unique tissue organizations. Successful engineering of mechanically active tissues relies on the integration of the mechanical sensing mechanism found in the native tissues into polymeric scaffolds. Intelligent biomaterials that closely mimic the structural organizations and multi-scale responsiveness of the natural extracellular matrices, when strategically combined with multipotent cells and dynamic culture devices that generate physiologically relevant physical forces, will lead to the creation of artificial tissues that are mechanically robust and biologically functional.

Type
Prospectives Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Ozerdem, O.R., Wolfe, S.A., and Marshall, D.: Use of skin substitutes in pediatric patients. J. Craniofac. Surg. 14, 517 (2003).CrossRefGoogle ScholarPubMed
2.Macchiarini, P., Jungebluth, P., Go, T., Asnaghi, M.A., Rees, L.E., Cogan, T.A., Dodson, A., Martorell, J., Bellini, S., Parnigotto, P.P., Dickinson, S.C., Hollander, A.P., Mantero, S., Conconi, M.T., and Birchall, M.A.: Clinical transplantation of a tissue-engineered airway. Lancet 372, 2023 (2008).CrossRefGoogle ScholarPubMed
3.Gkioni, K., Leeuwenburgh, S.C.G., Douglas, T.E.L., Mikos, A.G., and Jansen, J.A.: Mineralization of hydrogels for bone regeneration. Tissue Eng. Part B 16, 577 (2010).CrossRefGoogle ScholarPubMed
4.Atala, A., Bauer, S.B., Soker, S., Yoo, J.J., and Retik, A.B.: Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367, 1241 (2006).CrossRefGoogle ScholarPubMed
5.Venugopal, J.R., Prabhakaran, M.P., Mukherjee, S., Ravichandran, R., Dan, K., and Ramakrishna, S.: Biomaterial strategies for alleviation of myocardial infarction. J. R. Soc. Interface 9, 1 (2012).CrossRefGoogle ScholarPubMed
6.Kakisis, J.D., Liapis, C.D., Breuer, C., and Sumpio, B.E.: Artificial blood vessel: the holy grail of peripheral vascular surgery. J. Vasc. Surg. 41, 349 (2005).CrossRefGoogle ScholarPubMed
7.Gray, S.D.: Cellular physiology of the vocal folds. Otolaryngol. Clin. N. Am. 33, 679 (2000).CrossRefGoogle ScholarPubMed
8.Langer, R. and Tirrell, D.A.: Designing materials for biology and medicine. Nature 428, 487 (2004).CrossRefGoogle ScholarPubMed
9.Burdick, J.A. and Mauck, R.L., eds.: Biomaterials for Tissue Engineering: A Review of the Past and Future Trends (Springer, New York, NY, 2011).Google Scholar
10.Serrano, M.C., Chung, E.J., and Ameer, G.A.: Advances and applications of biodegradable elastomers in regenerative medicine. Adv. Funct. Mater. 20, 192 (2010).CrossRefGoogle Scholar
11.Lutolf, M.P. and Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47 (2005).Google Scholar
12.Crapo, P.M., Gilbert, T.W., and Badylak, S.F.: An overview of tissue and whole organ decellularization processes. Biomaterials 32, 3233 (2011).CrossRefGoogle ScholarPubMed
13.Amsden, B.: Curable, biodegradable elastomers: Emerging biomaterials for drug delivery and tissue engineering. Soft Matter 3, 1335 (2007).CrossRefGoogle ScholarPubMed
14.Lal, J. and Mark, J.E.: Advances in Elastomers and Rubber Elasticity (Plenum Press, New York, 1986).Google Scholar
15.Grieshaber, S.E., Jha, A.K., Farran, A.J.E., and Jia, X.: Hydrogels in tissue engineering. In Biomaterials for Tissue Engineering: A Review of the Past and Future Trends; Burdick, J.A. and Mauck, R.L., eds.; Springer, New York, 2011; p. 9.Google Scholar
16.Kopecek, J.: Hydrogels: from soft contact lenses and implants to self-assembled nanomaterials. J. Polym. Sci. Pol. Chem. 47, 5929 (2009).Google Scholar
17.Zhang, C., Aung, A., Liao, L.Q., and Varghese, S.: A novel single precursor-based biodegradable hydrogel with enhanced mechanical properties. Soft Matter 5, 3831 (2009).CrossRefGoogle Scholar
18.Gong, J.P.: Why are double network hydrogels so tough? Soft Matter 6, 2583 (2010).CrossRefGoogle Scholar
19.Haraguchi, K., Farnworth, R., Ohbayashi, A., and Takehisa, T.: Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly(n,n-dimethylacrylamide) and clay. Macromolecules 36, 5732 (2003).CrossRefGoogle Scholar
20.Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P.: Molecular Biology of the Cell (Garland Science, New York, 2002).Google Scholar
21.Debelle, L., and Tamburro, A.M.: Elastin: molecular description and function. Int. J. Biochem. Cell Biol. 31, 261 (1999).Google Scholar
22.Almine, J.F., Bax, D.V., Mithieux, S.M., Nivison-Smith, L., Rnjak, J., Waterhouse, A., Wise, S.G., and Weiss, A.S.: Elastin-based materials. Chem. Soc. Rev. 39, 3371 (2010).CrossRefGoogle ScholarPubMed
23.Bellingham, C.M., Lillie, M.A., Gosline, J.M., Wright, G.M., Starcher, B.C., Bailey, A.J., Woodhouse, K.A., and Keeley, F.W.. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers 70, 445 (2003).CrossRefGoogle ScholarPubMed
24.Grieshaber, S.E., Farran, A.J.E., Lin-Gibson, S., Kiick, K.L., and Jia, X.Q.: Synthesis and characterization of elastin-mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules 42, 2532 (2009).Google Scholar
25.Jia, X.Q. and Kiick, K.L.: Hybrid multicomponent hydrogels for tissue engineering. Macromol. Biosci. 9, 140 (2009).Google Scholar
26.Grieshaber, S.E., Farran, A.J.E., Bai, S., Kiick, K.L., and Jia, X.Q.: Tuning the properties of elastin mimetic hybrid copolymers via a modular polymerization method. Biomacromolecules (submitted 2012).CrossRefGoogle Scholar
27.Elvin, C.M., Carr, A.G., Huson, M.G., Maxwell, J.M., Pearson, R.D., Vuocolo, T., Liyou, N.E., Wong, D.C.C., Merritt, D.J., and Dixon, N.E.: Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437, 999 (2005).CrossRefGoogle ScholarPubMed
28.Qin, G.K., Rivkin, A., Lapidot, S., Hu, X., Preis, I., Arinus, S.B., Dgany, O., Shoseyov, O., and Kaplan, D.L.: Recombinant exon-encoded resilins for elastomeric biomaterials. Biomaterials 32, 9231 (2011).Google Scholar
29.Li, L.Q., Teller, S., Clifton, R.J., Jia, X.Q., and Kiick, K.L.: Tunable mechanical stability and deformation response of a resilin-based elastomer. Biomacromolecules 12, 2302 (2011).Google Scholar
30.Langer, R., and Vacanti, J.P.: Tissue engineering. Science 260, 920 (1993).Google Scholar
31.Zheng, P., and McCarthy, T.J.: A surprise from 1954: Siloxane equilibration is a simple, robust, and obvious polymer self-healing mechanism. J. Am. Chem. Soc. 134, 2024 (2012).Google ScholarPubMed
32.Montarnal, D., Capelot, M., Tournilhac, F., and Leibler, L.: Silica-like malleable materials from permanent organic networks. Science 334, 965 (2011).Google Scholar
33.Kloxin, C.J., Scott, T.F., Adzima, B.J., and Bowman, C.N.: Covalent adaptable networks (cans): a unique paradigm in cross-linked polymers. Macromolecules 43, 2643 (2010).Google Scholar
34.Ulijn, R.V. and Smith, A.M.: Designing peptide based nanomaterials. Chem. Soc. Rev. 37, 664 (2008).CrossRefGoogle ScholarPubMed
35.Orbach, R., Adler-Abramovich, L., Zigerson, S., Mironi-Harpaz, I., Seliktar, D., and Gazit, E.: Self-assembled fmoc-peptides as a platform for the formation of nanostructures and hydrogels. Biomacromolecules 10, 2646 (2009).Google Scholar
36.Hartgerink, J.D., Beniash, E., and Stupp, S.I.: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001).CrossRefGoogle ScholarPubMed
37.Zhang, S.G.: Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20, 321 (2002).Google Scholar
38.Schneider, J.P., Pochan, D.J., Ozbas, B., Rajagopal, K., Pakstis, L., and Kretsinger, J.: Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 124, 15030 (2002).CrossRefGoogle ScholarPubMed
39.Megeed, Z., Cappello, J., and Ghandehari, H.: Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Adv. Drug Deliv. Rev. 54, 1075 (2002).CrossRefGoogle ScholarPubMed
40.Shen, W., Zhang, K.C., Kornfield, J.A., and Tirrell, D.A.: Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat. Mater. 5, 153 (2006).CrossRefGoogle ScholarPubMed
41.Yan, C.Q., Altunbas, A., Yucel, T., Nagarkar, R.P., Schneider, J.P., and Pochan, D.J.: Injectable solid hydrogel: mechanism of shear-thinning and immediate recovery of injectable beta-hairpin peptide hydrogels. Soft Matter 6, 5143 (2010).Google Scholar
42.Hoffman, B.D., Grashoff, C., and Schwartz, M.A.: Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316 (2011).Google Scholar
43.Fratzl, P.: Biomimetic materials research: What can we really learn from nature's structural materials? J. R. Soc. Interface 4, 637 (2007).CrossRefGoogle ScholarPubMed
44.Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A.G., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 612 (2005).CrossRefGoogle ScholarPubMed
45.Becker, N., Oroudjev, E., Mutz, S., Cleveland, J.P., Hansma, P.K., Hayashi, C.Y., Makarov, D.E., and Hansma, H.G.: Molecular nanosprings in spider capture-silk threads. Nat. Mater. 2, 278 (2003).Google Scholar
46.Wisse, E., Govaert, L.E., Meijer, H.E.H., and Meijer, E.W.: Unusual tuning of mechanical properties of thermoplastic elastomers using supramolecular fillers. Macromolecules 39, 7425 (2006).CrossRefGoogle Scholar
47.Sijbesma, R.P., Beijer, F.H., Brunsveld, L., Folmer, B.J.B., Hirschberg, J., Lange, R.F.M., Lowe, J.K.L., and Meijer, E.W.: Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601 (1997).CrossRefGoogle ScholarPubMed
48.Greef, T.F.A., and Meijer, E.W.: Materials science—supramolecular polymers. Nature 453, 171 (2008).CrossRefGoogle ScholarPubMed
49.Kushner, A.M., Gabuchian, V., Johnson, E.G., and Guan, Z.B.: Biomimetic design of reversibly unfolding cross-linker to enhance mechanical properties of 3D network polymers. J. Am. Chem. Soc. 129, 14110 (2007).CrossRefGoogle ScholarPubMed
50.Kushner, A.M., and Guan, Z.B.: Modular design in natural and biomimetic soft materials. Angew. Chem.-Int. Ed. 50, 9026 (2011).Google Scholar
51.Cordier, P., Tournilhac, F., Soulie-Ziakovic, C., and Leibler, L.: Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977 (2008).Google Scholar
52.Dankers, P.Y.W., Harmsen, M.C., Brouwer, L.A., Van Luyn, M.J.A., and Meijer, E.W.: A modular and supramolecular approach to bioactive scaffolds for tissue engineering. Nat. Mater. 4, 568 (2005).CrossRefGoogle ScholarPubMed
53.Lv, S., Dudek, D.M., Cao, Y., Balamurali, M.M., Gosline, J., and Li, H.B.: Designed biomaterials to mimic the mechanical properties of muscles. Nature 465, 69 (2010).CrossRefGoogle ScholarPubMed
54.Stevens, M.M., and George, J.H.: Exploring and engineering the cell surface interface. Science 310, 1135 (2005).CrossRefGoogle ScholarPubMed
55.Torrent-Guasp, F., Kocica, M.J., Corno, A.F., Komeda, M., Carreras-Costa, F., Flotats, A., Cosin-Aguillar, J., and Wen, H.: Towards new understanding of the heart structure and function. Eur. J. Cardio-Thorac. Surg. 27, 191 (2005).Google Scholar
56.Holmes, J.W., Borg, T.K., and Covell, J.W.: Annual Review of Biomedical Engineering. Annual Reviews (Annual Review: Palo Alto, CA, 2005), Vol. 7, p. 223.Google Scholar
57.Cohen, N.P., Foster, R.J., and Mow, V.C.: Composition and dynamics of articular cartilage: Structure, function, and maintaining healthy state. J. Orthop. Sports Phys. Ther. 28, 203 (1998).CrossRefGoogle ScholarPubMed
58.Hirano, M.: Structure of the vocal fold in normal and diesease states: Anatomical and physical studies. ASHA Rep. 11, 11 (1981).Google Scholar
59.Jia, X.Q., Yeo, Y., Clifton, R.J., Jiao, T., Kohane, D.S., Kobler, J.B., Zeitels, S.M., and Langer, R.: Hyaluronic acid-based microgels and microgel networks for vocal fold regeneration. Biomacromolecules 7, 3336 (2006).Google Scholar
60.Jha, A.K., Hule, R.A., Jiao, T., Teller, S.S., Clifton, R.J., Duncan, R.L., Pochan, D.J., and Jia, X.Q.: Structural analysis and mechanical characterization of hyaluronic acid-based doubly cross-linked networks. Macromolecules 42, 537 (2009).Google Scholar
61.Jha, A.K., Malik, M.S., Farach-Carson, M.C., Duncan, R.L., and Jia, X.Q.: Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. Soft Matter 6, 5045 (2010).CrossRefGoogle ScholarPubMed
62.Jha, A.K., Yang, W.D., Kirn-Safran, C.B., Farach-Carson, M.C., and Jia, X.Q.: Perlecan domain i-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via bmp-2 release. Biomaterials 30, 6964 (2009).Google Scholar
63.Xu, X., Jha, A.K., Duncan, R.L., and Jia, X.Q.: Heparin-decorated, hyaluronic acid-based hydrogel particles for the controlled release of bone morphogenetic protein 2. Acta Biomater. 7, 3050 (2011).Google Scholar
64.Xu, X., Jha, A.K., Harrington, D.A., Farach-Carson, M.C., and Jia, X.Q.: Hyaluronic acid-based hydrogels: From a natural polysaccharide to complex networks. Soft Matter 8, 3280 (2012).CrossRefGoogle ScholarPubMed
65.Krishna, O.D., Jha, A.K., Jia, X.Q., and Kiick, K.L.: Integrin-mediated adhesion and proliferation of human mscs elicited by a hydroxyproline-lacking, collagen-like peptide. Biomaterials 32, 6412 (2011).CrossRefGoogle ScholarPubMed
66.Jha, A.K., Xu, X.A., Duncan, R.L., and Jia, X.Q.: Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32, 2466 (2011).CrossRefGoogle ScholarPubMed
67.Moutos, F.T., Freed, L.E., and Guilak, F.: A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nat. Mater. 6, 162 (2007).Google Scholar
68.Nerurkar, N.L., Baker, B.M., Sen, S., Wible, E.E., Elliott, D.M., and Mauck, R.L.: Nanofibrous biologic laminates replicate the form and function of the annulus fibrosus. Nat. Mater. 8, 986 (2009).CrossRefGoogle ScholarPubMed
69.Engelmayr, G.C., Cheng, M.Y., Bettinger, C.J., Borenstein, J.T., Langer, R., and Freed, L.E.: Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003 (2008).Google Scholar
70.Farach-Carson, M.C., Hecht, J.T., and Carson, D.D.: Heparan sulfate proteoglycans: key players in cartilage biology. Crit. Rev. Eukaryot. Gene Expr. 15, 29 (2005).CrossRefGoogle ScholarPubMed
71.Farach-Carson, M.C., and Carson, D.D.: Perlecan—a multifunctional extracellular proteoglycan scaffold. Glycobiology 17, 897 (2007).Google Scholar
72.Casper, C.L., Yang, W.D., Farach-Carson, M.C., and Rabolt, J.F.: Coating electrospun collagen and gelatin fibers with perlecan domain i for increased growth factor binding. Biomacromolecules 8, 1116 (2007).Google Scholar
73.Tschumperlin, D.J., Dai, G.H., Maly, I.V., Kikuchi, T., Laiho, L.H., McVittie, A.K., Haley, K.J., Lilly, C.M., So, P.T.C., Lauffenburger, D.A., Kamm, R.D., and Drazen, J.M.: Mechanotransduction through growth-factor shedding into the extracellular space. Nature 429, 83 (2004).Google Scholar
74.Lee, K.Y., Peters, M.C., Anderson, K.W., and Mooney, D.J.: Controlled growth factor release from synthetic extracellular matrices. Nature 408, 998 (2000).Google Scholar
75.Xiao, L.X., Liu, C., Zhu, J.H., Pochan, D.J., and Jia, X.Q.: Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles. Soft Matter 6, 5293 (2010).Google Scholar
76.Xiao, L.X., Zhu, J.H., Pochan, D.J., Londono, J.D., and Jia, X.Q.: Mechanoresponsive hydrogels via the covalent integration of block copolymer micelles in macroscopic matrices. Soft Matter (manuscript in preparation 2011).Google Scholar
77.Hartnick, C.J., Rehbar, R., and Prasad, V.: Development and maturation of the pediatric human vocal fold lamina propria. Laryngoscope 115, 4 (2005).Google Scholar
78.Sato, K., Hirano, M., and Nakashima, T.: Fine structure of the human newborn and infant vocal fold mucosae. Ann. Otol. Rhinol. Laryngol. 110, 417 (2001).Google Scholar
79.Sato, K., Hirano, M., and Nakashima, T.: Age-related changes of collagenous fibers in the human vocal fold mucosa. Ann. Otol. Rhinol. Laryngol. 111, 1520 (2002).Google Scholar
80.Sato, K., Nakashima, T., Nonaka, S., and Harabuchi, Y.: Histopathologic investigations of the unphonated human vocal fold mucosa. Acta Oto-Laryngol. 128, 694 (2008).CrossRefGoogle ScholarPubMed
81.Kresh, J.Y., and Chopra, A.: Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch. 462, 75 (2011).CrossRefGoogle ScholarPubMed
82.Kung, C.: A possible unifying principle for mechanosensation. Nature 436, 647 (2005).Google Scholar
83.Chiquet, M.: Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18, 417 (1999).CrossRefGoogle ScholarPubMed
84.Chicurel, M.E., Chen, C.S., and Ingber, D.E.: Cellular control lies in the balance of forces. Curr. Opin. Cell. Biol. 10, 232 (1998).CrossRefGoogle Scholar
85.Ingber, D.E.: Tensegrity-based mechanosensing from macro to micro. Prog. Biophys. Mol. Biol. 97, 163 (2008).Google Scholar
86.Ingber, D.E.: Cellular mechanotransduction: Putting all the pieces together again. Faseb J. 20, 811 (2006).Google Scholar
87.Fletcher, D.A., and Mullins, D.: Cell mechanics and the cytoskeleton. Nature 463, 485 (2010).Google Scholar
88.Chen, H.C., and Hu, Y.C.: Bioreactors for tissue engineering. Biotechnol. Lett. 28, 1415 (2006).CrossRefGoogle ScholarPubMed
89.Niklason, L.E., Gao, J., Abbott, W.M., Hirschi, K.K., Houser, S., Marini, R., and Langer, R.: Functional arteries grown in vitro. Science 284, 489 (1999).Google Scholar
90.Davisson, T., Kunig, S., Chen, A., Sah, R., and Ratcliffe, A.: Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20, 842 (2002).Google Scholar
91.Doroski, D.M., Levenston, M.E., and Temenoff, J.S.: Cyclic tensile culture promotes fibroblastic differentiation of marrow stromal cells encapsulated in poly(ethylene glycol)-based hydrogels. Tissue Eng. Part A 16, 3457 (2010).Google Scholar
92.Titze, I.R.: Mechanical stress in phonation. J. Voice 8, 99 (1994).Google Scholar
93.Titze, I.R., Hitchcock, R.W., Broadhead, K., Webb, K., Li, W., Gray, S.D., and Tresco, P.A.: Design and validation of a bioreactor for engineering vocal fold tissues under combined tensile and vibrational stresses. J. Biomech. 37, 1521 (2004).Google Scholar
94.Kutty, J.K., and Webb, K.: Vibration stimulates vocal mucosa-like matrix expression by hydrogel-encapsulated fibroblasts. J. Tissue Eng. Regen. M 4, 62 (2010).Google ScholarPubMed
95.Jia, X., Jia, M., Jha, A.K., Farran, A.J.E., and Tong, Z.: Dynamic vibrational method and device for vocal fold tissue growth. U.S. Patent No. 12/781,305, May 17, 2010.Google Scholar
96.Farran, A.J.E., Teller, S.S., Jia, F., Clifton, R.J., Duncan, R.L., and Jia, X.: Design and characterization of a dynamic vibrational culture system. J. Tissue Eng. Regen. M (in press 2011). doi: 10.1002/term.514.Google ScholarPubMed
97.Ramachandran, S., Tseng, Y., and Yu, Y.B.: Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus. Biomacromolecules 6, 1316 (2005).Google Scholar