Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-30T07:47:32.876Z Has data issue: false hasContentIssue false

Atomistic interpretation of the dynamic response of glasses

Published online by Cambridge University Press:  12 May 2014

JongDoo Ju
Affiliation:
Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan
Michael Atzmon*
Affiliation:
Department of Nuclear Engineering and Radiological Sciences & Department of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan
*
Address all correspondence to Michael Atzmon at[email protected]
Get access

Abstract

Using detailed information on the spectrum of shear transformation dynamics previously obtained from low-strain, quasi-static anelastic relaxation in a metallic glass, the corresponding response to a cyclic force is calculated, and prevailing analysis approaches are evaluated. It is shown that the time–temperature superposition principle does not resolve the distribution of activation energies for shear transformations. The distribution of shear transformation zone sizes explains the microscopic mechanisms of both slow (α) and fast (β) relaxations, and the fact that the former are irreversible. These results suggest the need to re-evaluate past interpretations of dynamic behavior of glasses.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Angell, C.A., Ngai, K.L., McKenna, G.B., McMillan, P.F., and Martin, S.W.: Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113 (2000).CrossRefGoogle Scholar
2.Ngai, K.L., Plazek, D.J., and Rendell, R.W.: Some examples of possible descriptions of dynamic properties of polymers by means of the coupling model. Rheol. Acta 36, 307 (1997).CrossRefGoogle Scholar
3.Salmén, L.: Viscoelastic properties of in situ lignin under water-saturated conditions. J. Mater. Sci. 19, 3090 (1984).CrossRefGoogle Scholar
4.Qiao, J.C. and Pelletier, J.M.: Mechanical relaxation in a Zr-based bulk metallic glass: analysis based on physical models. J. Appl. Phys. 112, 033518 (2012).CrossRefGoogle Scholar
5.Jeong, H.T., Fleury, E., Kim, W.T., Kim, D.H., and Hono, K.: Study on the mechanical relaxations of a Zr36Ti24Be40 amorphous alloy by time–temperature superposition principle. J. Phys. Soc. Japan 11, 3192 (2004).Google Scholar
6.Kohlrausch, R.: Theorie des elektrischen Rückstandes in der Leidner Flasche. Ann. Phys. Leipz. 91, 56 (1854).CrossRefGoogle Scholar
7.Williams, G. and Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
8.Williams, G., Watts, D.C., Dev, S.B., and North, A.M.: Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 67, 1323 (1971).Google Scholar
9.MacDonald, J.R.: Accurate fitting of immittance spectroscopy frequency-response data using the stretched exponential model. J. Non-Cryst Solids 212, 95116 (1997).Google Scholar
10.Johari, G.P. and Goldstein, M.: Molecular mobility in simple glasses. J. Phys. Chem. 74, 2034 (1970).CrossRefGoogle Scholar
11.Schneider, U., Brand, R., Lunkenheimer, P., and Loidl, A.: Excess wing in the dielectric loss of glass formers: A Johari-Goldstein β relaxation? Phys. Rev. Lett. 84, 5560 (2000).CrossRefGoogle ScholarPubMed
12.Cohen, Y., Karmakar, S., Procaccia, I., and Samwer, K.: The nature of the β-peak in the loss modulus of amorphous solids. Europhys. Lett. 100, 36003 (2012).CrossRefGoogle Scholar
13.Johari, G.P. and Goldstein, M.: Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules. J. Chem. Phys. 53, 2372 (1970).Google Scholar
14.Ju, J.D., Jang, D., Nwankpa, A., and Atzmon, M.: An atomically quantized hierarchy of shear transformation zones in a metallic glass. J. Appl. Phys. 109, 053522 (2011).CrossRefGoogle Scholar
15.Argon, A.S.: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).CrossRefGoogle Scholar
16.Argon, A.S. and Shi, L.T.: Development of visco-plastic deformation in metallic glasses. Acta Metall. 31, 499 (1983).Google Scholar
17.Falk, M.L. and Langer, J.S.: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).Google Scholar
18.Argon, A. and Demkowicz, M.J.: What can plasticity of amorphous silicon tell us about plasticity of metallic glasses? Metall. Mater. Trans. 39, 1762 (2008).CrossRefGoogle Scholar
19.Atzmon, M. and Ju, J.D.: Unpublished results.Google Scholar
20.Ju, J.D. and Atzmon, M.: A comprehensive atomistic analysis of the experimental dynamic-mechanical response of a metallic glass. Acta Mater. (2014, in press) DOi: 10.1016/j.actamat.2014.04.012.CrossRefGoogle Scholar
21.Lakes, R.S., Viscoelastic Solids (CRC Press, Boca Baton, FL, 1999).Google Scholar
22.Bergman, R.: General susceptibility functions for relaxations in disordered systems. J. Appl. Phys. 88, 1356 (2000).CrossRefGoogle Scholar
23.Suh, D. and Dauskardt, R.H.: Mechanical relaxation time scales in a Zr–Ti–Ni–Cu–Be bulk metallic glass. J. Mater. Res. 17, 1255 (2002).Google Scholar
24.Dyre, J.C., Olsen, N.B., and Christensen, T.: Local elastic expansion model for viscous-flow activation energies of glass-forming molecular liquids. Phys. Rev. B53, 2171 (1996).Google Scholar
25.Vogel, H.: Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z. 22, 645 (1921).Google Scholar
26.Fulcher, G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339 (1925).CrossRefGoogle Scholar
27.Tammann, G. and Hesse, W.: The dependency of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245 (1926).Google Scholar
28.Williams, M.L., Landel, R.F., and Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Amer. Cer. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
29.Qiao, J.C. and Pelletier, J.M.: Dynamic mechanical analysis in La-based bulk metallic glasses: secondary (β) and main (α) relaxations. J. Appl. Phys. 112, 083528 (2012).CrossRefGoogle Scholar
30.Yu, H.B., Samwer, K., Wu, Y., and Wang, W.H.: Correlation between β relaxation and self-diffusion of the smallest constituting atoms in metallic glasses. Phys. Rev. Lett. 109, 095508 (2012).Google Scholar
31.Delogu, F.: Atomic mobility and strain localization in amorphous metals. Phys. Rev. Lett. 100, 075901 (2008).Google Scholar
32.Argon, A.S.: The Physics of Deformation and Fracture of Polymers (Cambridge University Press, New York, 2013), Ch. 7.CrossRefGoogle Scholar