Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T04:04:31.621Z Has data issue: false hasContentIssue false

Alkyne-modified water-stable alkylammonium lead(II) iodide perovskite

Published online by Cambridge University Press:  16 April 2018

Sayantan Sasmal
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore Materials Science Programme, Indian Institute of Technology Kanpur208016, UP, India
Suresh Valiyaveettil*
Affiliation:
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore Materials Science Programme, Indian Institute of Technology Kanpur208016, UP, India
Arun P. Upadhyay
Affiliation:
Department of Chemical Engineering, Materials Science Programme, Centre for Environmental Science & Engineering, Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur208016, UP, India
Raj Ganesh S. Pala*
Affiliation:
Department of Chemical Engineering, Materials Science Programme, Centre for Environmental Science & Engineering, Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur208016, UP, India
Sri Sivakumar*
Affiliation:
Department of Chemical Engineering, Materials Science Programme, Centre for Environmental Science & Engineering, Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur208016, UP, India
Dharmadoss Sornadurai
Affiliation:
Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
Chakram S. Sundar
Affiliation:
Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
*
Address all correspondence to Raj Ganesh S. Pala, Sri Sivakumar and Suresh Valiyaveettil, [email protected]; [email protected]; [email protected]
Address all correspondence to Raj Ganesh S. Pala, Sri Sivakumar and Suresh Valiyaveettil, [email protected]; [email protected]; [email protected]
Address all correspondence to Raj Ganesh S. Pala, Sri Sivakumar and Suresh Valiyaveettil, [email protected]; [email protected]; [email protected]
Get access

Abstract

Perovskite materials are sensitive to environmental conditions. Here we report the synthesis and characterization of a hydrophobic alkylammonium lead(II) iodide perovskite with enhanced stability in water. Water stability was achieved by growing a shell of 4-[(N-3-butyne)carboxyamido]anilinium lead(II) iodide over methylammonium lead(II) iodide. As a proof of concept, the water-splitting reaction was performed using our new material coated on TiO2, and a 7-fold increase in applied bias photon-to-current efficiency was observed as compared with standard p25-TiO2. Such simple and versatile chemical modification to induce high water stability is useful toward exploring new applications for the perovskite materials.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050 (2009).CrossRefGoogle ScholarPubMed
2.Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., and Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643 (2012).CrossRefGoogle ScholarPubMed
3.Zhou, H., Chen, Q., Li, G., Luo, S., Song, T-B., Duan, H-S., Hong, Z., You, J., Liu, Y., and Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542 (2014).CrossRefGoogle ScholarPubMed
4.Yang, J., Siempelkamp, B.D., Liu, D., and Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955 (2015).CrossRefGoogle ScholarPubMed
5.Wang, D., Wright, M., Elumalai, N.K., and Uddin, A.: Stability of perovskite solar cells. Sol. Energy Mater. Sol. Cells 147, 255 (2016).CrossRefGoogle Scholar
6.Kumar, S. and Dhar, A.: Accelerated thermal-aging-induced degradation of organometal triiodide perovskite on ZnO nanostructures and its effect on hybrid photovoltaic devices. ACS Appl. Mater. Interfaces 8, 18309 (2016).CrossRefGoogle ScholarPubMed
7.Jiang, Q., Rebollar, D., Gong, J., Piacentino, E.L., Zheng, C., and Xu, T.: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I thin films. Angew. Chem. Int. Ed. 54, 7617 (2015).CrossRefGoogle Scholar
8.Yang, S., Wang, Y., Liu, P., Cheng, Y.B., Zhao, H.J., and Yang, H.G.: Functionalization of perovskite thin films with moisture-tolerant molecules. Nat. Energy 1, 15016 (2016).CrossRefGoogle Scholar
9.Niu, G., Li, W., Meng, F., Wang, L., Donga, H., and Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014).CrossRefGoogle Scholar
10.Zheng, L., Chung, Y.H., Ma, Y., Zhang, L., Xiao, L., Chen, Z., Wang, S., Qu, B., and Gong, Q.: A hydrophobic hole transporting oligothiophene for planar perovskite solar cells with improved stability. Chem. Commun. 50, 11196 (2014).CrossRefGoogle ScholarPubMed
11.Da, P., Cha, M., Sun, L., Wu, Y., Wang, Z-S., and Zheng, G.: High-performance perovskite photoanode enabled by Ni passivation and catalysis. Nano Lett. 15, 3452 (2015).CrossRefGoogle ScholarPubMed
12.Kim, J.H., Jo, Y., Kim, J.H., Jang, J.W., Kang, H.J., Lee, Y.H., Kim, D.S., Jun, Y., and Lee, J.S.: Wireless solar water splitting device with robust cobalt-catalyzed, dual-doped BiVO4 photoanode and perovskite solar cell in Tandem: a dual absorber artificial leaf. ACS Nano 9, 11820 (2015).CrossRefGoogle ScholarPubMed
13.Dirin, D.N., Dreyfuss, S., Bodnarchuk, M.I., Nedelcu, G., Papagiorgis, P., Itskos, G., and Kovalenko, M.V.: Lead halide perovskites and other metal halide complexes as inorganic capping ligands for colloidal nanocrystals. J. Am. Chem. Soc. 136, 6550 (2014).CrossRefGoogle ScholarPubMed
14.Hwang, I., Jeong, I., Lee, J., Ko, M.J., and Yong, K.: Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330 (2015).CrossRefGoogle ScholarPubMed
15.Guarnera, S., Abate, A., Zhang, W., Foster, J.M., Richardson, G., Petrozza, A., and Snaith, H.J.: Improving the long-term stability of perovskite solar cells with a porous Al2O3 buffer layer. J. Phys. Chem. Lett. 6, 432 (2015).CrossRefGoogle ScholarPubMed
16.Kim, H-S., Lee, C-R., Im, J-H., Lee, K-B., Moehl, T., Marchioro, A., Moon, S-J., Humphry-Baker, R., Yum, J-H., Moser, J.E., Grätzel, M., and Park, N-G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012).CrossRefGoogle ScholarPubMed
17.Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Pechy, P., and Grätzel, M.: Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovolt.: Res. Appl. 15, 603 (2007).CrossRefGoogle Scholar
18.Oku, T.: Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar Cells, Solar Cells-New Approaches and Reviews, ed. L.A. Kosyachenko, InTech, Rijeka, Croatia ISBN: 78-953-51-2184-8, DOI: 10.5772/59284. (2015). Available at: http://www.intechopen.com/books/solar-cells-new-approaches-and-reviews/crystal-structures-of-ch3nh3pbi3-and-related-perovskite-compounds-used-for-solar-cells.Google Scholar
19.Maxim, F., Ferreira, P., Vilarinho, P.M., and Reaney, I.: Hydrothermal synthesis and crystal growth studies of BaTiO3 using Ti nanotube precursors. Cryst. Growth Des. 8, 3309 (2008).CrossRefGoogle Scholar
20.Brune, H., Romainczyk, C., Roder, H., and Kern, K.: mechanism of the transition from fractal to dendritic growth of surface aggregates. Nature 369, 469 (1994).CrossRefGoogle Scholar
21.Ranguelov, B., Goranova, D., Tonchev, V., and Yakimova, R.: Diffusion limited aggregation with modified local rules. C. R. Acad. Bulg. Sci. 65, 913 (2012).Google Scholar
22.Gelderman, K., Lee, L., and Donne, S.W.: Flat-band potential of a semiconductor: W using the Mott–Schottky equation. J. Chem. Educ. 84, 685 (2007).CrossRefGoogle Scholar
23.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
24.Aharon, S., Dymshits, A., Rotem, A., and Edgar, L.: Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J. Mater. Chem. A 3, 9171 (2015).CrossRefGoogle Scholar
25.Hisatomi, T., Kubota, J., and Domen, K.: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520 (2014).CrossRefGoogle ScholarPubMed
26.Daghrir, R., Drogui, P., and Rober, D.: Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52, 3581 (2013).CrossRefGoogle Scholar
27.Chen, Z., Jaramillo, T.F., Deutsch, T.G., Kleiman-Shwarsctein, A., Forman, A.J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E.W., Domen, K., Miller, E.L., Turner, J.A., and Dinh, H.N.: Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3 (2010).CrossRefGoogle Scholar
28.Upadhyay, A.P., Behara, D.K., Sharma, G.P., Gyanprakash, M., Pala, R.G.S., and Sivakumar, S.: Fabricating appropriate band-edge-staggered heterosemiconductors with optically activated Au nanoparticles via click chemistry for photoelectrochemical water splitting. ACS Sustain. Chem. Eng. 4, 4511 (2016).CrossRefGoogle Scholar
29.Gao, Y., Ding, X., Liu, J., Wang, L., Lu, Z., Li, L., and Sun, L.: Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J. Am. Chem. Soc. 135, 4219 (2013).CrossRefGoogle Scholar
30.Wang, J., Zhong, H.X., Qin, Y.L., and Zhang, X.B.: An efficient three-dimensional oxygen evolution electrode. Angew. Chem. Int. Ed. 52, 5248 (2013).CrossRefGoogle ScholarPubMed
31.Ji, K.H., Jang, D.M., Cho, Y.J., Myung, Y., Kim, H.S., Kim, Y., and Park, J.: Comparative photocatalytic ability of nanocrystal-carbon nanotube and -TiO2 nanocrystal hybrid nanostructures. J. Phys. Chem. C 113, 19966 (2009).CrossRefGoogle Scholar
Supplementary material: File

Sasmal et al. supplementary material 1

Sasmal et al. supplementary material

Download Sasmal et al. supplementary material 1(File)
File 1.1 MB