Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T10:48:26.819Z Has data issue: false hasContentIssue false

Ab initio lattice thermal conductivity of bulk and thin-film α-Al2O3

Published online by Cambridge University Press:  22 August 2018

Bonny Dongre
Affiliation:
Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
Jesús Carrete
Affiliation:
Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
Natalio Mingo
Affiliation:
LITEN, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
Georg K.H. Madsen*
Affiliation:
Institute of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
*
Address all correspondence to Georg K.H. Madsen at [email protected]
Get access

Abstract

The thermal conductivities (κ) of bulk and thin-film α-Al2O3 are calculated from first principles using both the local density approximation (LDA) and the generalized gradient approximation (GGA) to exchange and correlation. The room temperature single-crystal LDA value ~39 W/m K agrees well with the experimental values ~35–39 W/m K, whereas the GGA values are much smaller ~26 W/m K. Throughout the temperature range, LDA is found to slightly overestimate κ, whereas GGA strongly underestimates it. We calculate the κ of crystalline α-Al2O3 thin films and observe a maximum of 79% reduction for 10 nm thickness.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Santos, R.C.R., Longhinotti, E., Freire, V.N., Reimberg, R.B., and Caetano, E.W.S.: Elucidating the high-k insulator α-Al2O3 direct/indirect energy band gap type through density functional theory computations. Chem. Phys. Lett. 637, 172176 (2015).Google Scholar
2.Cahill, D.G., Lee, S.-M., and Selinder, T.I.: Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings. J. Appl. Phys. 83, 57835786 (1998).Google Scholar
3.Guo, Z., Ambrosio, F., and Pasquarello, A.: Oxygen defects in amorphous Al2O3: A hybrid functional study. Appl. Phys. Lett. 109, 062903 (2016).Google Scholar
4.Choi, M., Janotti, A., and Van de Walle, C.G.: Native point defects and dangling bonds in α-Al2O3. J. Appl. Phys. 113, 044501 (2013).Google Scholar
5.Wu, J., Lind, E., Timm, R., Hjort, M., Mikkelsen, A., and Wernersson, L.-E.: Al2O3/InAs metal-oxide-semiconductor capacitors on (100) and (111)B substrates. Appl. Phys. Lett. 100, 132905 (2012).Google Scholar
6.Colleoni, D., Miceli, G., and Pasquarello, A.: Band alignment and chemical bonding at the GaAs/Al2O3 interface: A hybrid functional study. Appl. Phys. Lett. 107, 211601 (2015).Google Scholar
7.Pop, E. and Goodson, K.E.: Thermal phenomena in nanoscale transistors. J. Electron. Packag. 128, 102108 (2006).Google Scholar
8.Palumbo, F., Lombardo, S., and Eizenberg, M.: Influence of gate oxides with high thermal conductivity on the failure distribution of InGaAs-based MOS stacks. Microelectron. Reliab. 56, 2228 (2016).Google Scholar
9.Stark, I., Stordeur, M., and Syrowatka, F.: Thermal conductivity of thin amorphous alumina films. Thin Solid Films 226, 185190 (1993).Google Scholar
10.Lee, S.-M., Cahill, D.G., and Allen, T.H.: Thermal conductivity of sputtered oxide films. Phys. Rev. B 52, 253 (1995).Google Scholar
11.Slack, G.A.: Thermal conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 crystals from 3° to 300° k. Phys. Rev. 126, 427 (1962).Google Scholar
12.Williams, R.K., Graves, R.S., Janney, M.A., Tiegs, T.N., and Yarbrough, D.W.: The effects of Cr2O3 and Fe2O3 additions on the thermal conductivity of Al2O3. J. Appl. Phys. 61, 48944901 (1987).Google Scholar
13.Smith, D.S., Fayette, S., Grandjean, S., Martin, C., Telle, R., and Tonnessen, T.: Thermal resistance of grain boundaries in alumina ceramics and re-fractories. J. Am. Ceram. Soc. 86, 105111 (2003).Google Scholar
14.Lee, J., Kim, Y., Jung, U., and Chung, W.: Thermal conductivity of anodized aluminum oxide layer: The effect of electrolyte and temperature. Mater. Chem. Phys. 141, 680685 (2013).Google Scholar
15.Kargar, F., Ramirez, S., Debnath, B., Malekpour, H., Lake, R.K., and Balandin, A.A.: Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Appl. Phys. Lett. 107, 171904 (2015).Google Scholar
16.Carrete, J., Vermeersch, B., Katre, A., van Roekeghem, A., Wang, T., Madsen, G.K.H., and Mingo, N.: almabte: A solver of the space–time dependent boltzmann transport equation for phonons in structured materials. Comput. Phys. Commun. 220, 351362 (2017).Google Scholar
17.Li, W., Carrete, J., Katcho, N.A., and Mingo, N.: Shengbte: A solver of the boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 17471758 (2014).Google Scholar
18.Tamura, S.-I.: Isotope scattering of dispersive phonons in Ge. Phys. Rev. B 27, 858 (1983).Google Scholar
19.Katre, A., Carrete, J., Dongre, B., Madsen, G.K.H., and Mingo, N.: Exceptionally strong phonon scattering by B substitution in cubic SiC. Phys. Rev. Lett. 119, 075902 (2017).Google Scholar
20.Dongre, B., Carrete, J., Katre, A., Mingo, N., and Madsen, G.K.H.: Resonant phonon scattering in semiconductors. J. Mater. Chem. C 6, 46914697 (2018).Google Scholar
21.Kundu, A., Mingo, N., Broido, D.A., and Stewart, D.A.: Role of light and heavy embedded nanoparticles on the thermal conductivity of SiGe alloys. Phys. Rev. B 84, 125426 (2011).Google Scholar
22.Wang, T., Carrete, J., van Roekeghem, A., Mingo, N., and Madsen, G.K.H.: Ab initio phonon scattering by dislocations. Phys. Rev. B 95, 245304 (2017).Google Scholar
23.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).Google Scholar
24.Kresse, G. and Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).Google Scholar
25.Perdew, J.P. and Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048 (1981).Google Scholar
26.Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
27.Mousavi, S.J., Abolhassani, M.R., Hosseini, S.M., and Sebt, S.A.: Comparison of electronic and optical properties of the α and κ phases of alumina using density functional theory. Chin. J. Phys. 47, 862873 (2009).Google Scholar
28.Togo, A. and Tanaka, I.: First principles phonon calculations in materials science. Scr. Mater. 108, 15 (2015).Google Scholar
29.Wang, Y., Wang, J.J., Wang, W.Y., Mei, Z.G., Shang, S.L., Chen, L.Q., and Liu, Z.K.: A mixed-space approach to first-principles calculations of phonon frequencies for polar materials. J. Phys. Condens. Matter 22, 202201 (2010).Google Scholar
30.Heid, R., Strauch, D., and Bohnen, K.-P.: Ab initio lattice dynamics of sapphire. Phys. Rev. B 61, 8625 (2000).Google Scholar
31.Schober, H., Strauch, D., and Dorner, B.: Lattice dynamics of sapphire (Al2O3). Z. Phys. B Condens. Matter 92, 273283 (1993).Google Scholar
32.Katre, A., Togo, A., Tanaka, I., and Madsen, G.K.H.: First principles study of thermal conductivity cross-over in nanostructured zinc-chalcogenides. J. Appl. Phys. 117, 045102 (2015).Google Scholar
33.Stern, R., Wang, T., Carrete, J., Mingo, N., and Madsen, G.K.H.: Influence of point defects on the thermal conductivity in FeSi. Phys. Rev. B 97, 195201 (2018).Google Scholar