Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T13:38:28.827Z Has data issue: false hasContentIssue false

High-Performance Packaging of Power Electronics

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Packaging of solid-state power electronics is a highly interdisciplinary process requiring knowledge of electronics, heat transfer, mechanics, and materials science. Consequently, there are numerous opportunities for innovations at the interfaces of these complementary fields. This article offers a perspective of the current state of the art and identifies six specific areas for materials-based research in power electronics packaging. The emphasis is on identifying the underlying physical relationships that link the performance of the power electronics system to the microstructure and architectural arrangement of the constituents.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Jahns, T.M. and Owen, E.L., IEEE Trans. Power Electron. 16 (1) (2001) p. 17.CrossRefGoogle Scholar
2.Wikstrom, P., Terens, A., and Kobi, H., IEEE Trans. Ind. Appl. 36 (1) (2000).CrossRefGoogle Scholar
3.Shaw, M.C. and Beihoff, B.C., in Proc. IEEE, Vol. 89, No. 6, Special Edition on Power Electronics, edited by van Wyk, J.D., Lee, F.C., and Boroyevich, D. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001).Google Scholar
4.Wilson, J., Electronics Cooling 8 (1) (2002) p. 14.Google Scholar
5.Tummala, R.R. and Rymaszewski, E.J., Microelectronics Packaging Handbook (Van Nostrand Reinhold, New York, 1989).Google Scholar
6.Taraseisky, H., Power Hybrid Circuit Design and Manufacture (Marcel Dekker, New York, 1996).Google Scholar
7.Sze, S.M., Physics of Semiconductor Devices (John Wiley & Sons, 1981).Google Scholar
8.Beck, J.V., Osman, A.M., and Lu, G., J. Heat Transfer 115 (1993) p. 51.CrossRefGoogle Scholar
9.Fu, C.-Y. and Ume, C., JOM (June 1995) p. 31.CrossRefGoogle Scholar
10.Sofia, J.W., IEEE Trans. Components, Packag., Manuf. Technol., Part A 18 (1995) p. 39.Google Scholar
11.Guenin, B.M., Electronics Cooling 8 (3) (2002).Google Scholar
12.Ammous, A. and Allard, B., IEEE Trans. Power Electron. 13 (1) (1998) p. 12.CrossRefGoogle Scholar
13.Nakayama, W., Appl. Mech. Rev. 39 (12) (1986) p. 1847.CrossRefGoogle Scholar
14.Garner, S.D., Electronics Cooling 2 (3) (1996).Google Scholar
15.Sekhon, K.S. and Ruwe, V.W., in Proc. ISHM Int. Microelectronics Symp. (1984) p. 16.Google Scholar
16.Dethlefsen, R., Egli, A., and Feldman, K.T., IEEE Trans. Power Appar. Sys. PAS-101 (9) (1982).Google Scholar
17.Shaw, M.C., Waldrop, J.R., Chandrasekaran, S., Kagawala, B., Jing, X., Brown, E.R., Dhir, M., and Fabbeo, M., in Proc. ITherm Conf. (2002).Google Scholar
18.Tuckerman, D.B. and Pease, R.F.W., IEEE Electron Device Lett. EDL-2 (5) (1981).Google Scholar
19.Oktay, S., Hannemann, R., and Bar-Cohen, A., Mech. Eng. 108 (3) (1986) p. 36.Google Scholar
20.Kishimoto, T. and Ohsaki, T., in Proc. 36th Electronic Components Conf. (1986) p. 595.Google Scholar
21.Patel, R.M., Wagner, D.K., Danner, A.D., Fallahpour, K., and Stinnet, R.S., in Proc. SPIE, Vol. 1634 (SPIE—The International Society for Optical Engineering, Bellingham, WA) p. 466.Google Scholar
22.Vassilakis, E., Fillardet, T., Groussin, B., Carfemel, V., and Carriere, C., Electron. Lett. 31 (13) (1995) p. 1056.CrossRefGoogle Scholar
23.Campbell, G.O., Estes, E.A., Hassapis, C.V., and Sherman, M.M., in Proc. STAIF-96 Conf. p. 933.Google Scholar
24.Yamada, Y., Itahana, H., and Okada, S., Hitachi Review 29 (1980) p. 25.Google Scholar
25.Evans, A.G., Hutchinson, J.W., Fleck, N.A., Ashby, M.F., and Wadley, H.N.G., Prog. Mater. Sci. 46 (2001) p. 309.CrossRefGoogle Scholar
26.Lee, Y.C., Zhang, W., Xie, H., and Mahajan, R., Advances in Electronic Packaging, EEP Vol. 4.1, (Electronic and Photonic Packaging Division, ASME International, New York, 1993).Google Scholar
27.Humphries, W.R. and Griggs, E.I., “A Design Handbook for Phase Change Thermal Control and Energy Storage Devices,” NASA Technical Paper 1074 (National Aeronautics and Space Administration, Washington, DC, November 1977).Google Scholar
28.Hale, D.V., Hoover, M.J., and O'Neill, M.J., Phase Change Materials Handbook, NASA CR-61363 (National Aeronautics and Space Administration, Washington, DC, September 1971).Google Scholar
29.Evans, A.G., He, M.Y., Hutchinson, J.W., and Shaw, M.C., J. Electron. Packag. 123 (2001) p. 211.CrossRefGoogle Scholar
30.Liu, C.Y., Chen, C., Liao, C.N., and Tu, K.N., Appl. Phys. Lett. 75 (1) (1999) p. 58.CrossRefGoogle Scholar
31.Ye, H., Basaran, C., Hopkins, D., and Cartwright, A., in Proc. ITherm Conf. (San Diego) p. 946.Google Scholar
32.Wu, W., Held, M., Jacob, P., Scacco, P., and Birolini, A., in Proc. 7th Int. Symp. on Power Semiconductor Devices and ICs (IPSD '95) (Yokohama, Japan).Google Scholar
33.Wu, W., Held, M., Jacob, P., Scacco, P., and Birolini, A., in Proc. 7th Int. Symp. on Power Semiconductor Devices and ICs (IPSD ′95) (Yokohama, Japan).Google Scholar
34.Saito, R., Koike, Y., Tanaka, A., Kushima, T., Shimizu, H., and Nonoyama, S., in Proc. Int. Symp. on Power Semiconductor Devices (Toronto, Canada, 1999).Google Scholar
35.LeFranc, G., Licht, T., Schultz, H.J., Beinert, R., and Mitic, G., Microelectron. Relia. 40 (2000) p. 1661.CrossRefGoogle Scholar
36.Coquery, G. and Lallemand, R., Microelectron. Relia. 40 (2000) p. 1667.CrossRefGoogle Scholar
37.Westerhold, D., Schmidt, G., and Schulze, H.-J., in Proc. Power Conversion Conf. (Nuremburg, 1999).Google Scholar
38.Sommer, K., Göttert, J., Lefranc, G., and Spanke, R., in Proc. Eur. Conf. on Power Electronics and Applications, EPE ′97 (Trondheim, 1997) p. 512.Google Scholar
39.Brown, E.R. and Shaw, M.C., IEEE Trans. Compon. Packag. Technol. (2002) in press.Google Scholar
40.Pecht, M., Integrated Circuit, Hybrid, and Multichip Module Package Design Guidelines: A Focus on Reliability (John Wiley & Sons, New York, 1994).Google Scholar
41.Elsayed, A., Reliability Engineering (Addison Wesley Longman, Reading, MA, 1996).Google Scholar
42.He, J., Shaw, M.C., Sridhar, N., Cox, B.N., and Clarke, D.R., in Electronic Packaging Materials Science X, edited by Belton, D.J., Gaynes, M., Jacobs, E.G., Pearson, R., and Wu, T. (Mater. Res. Soc. Symp. Proc. 515, Warrendale, PA, 1998) p. 99.Google Scholar
43.He, J., Shaw, M.C., Mather, J.C., and Addison, R.C. Jr, in Proc. IEEE Industry Applications Soc. Conf. (St. Louis, 1998).Google Scholar
44.Shaw, M.C., He, J., Mather, J., and Addison, R.C., IEEE Trans. Compon. Packag. Technol. (2002) in press.Google Scholar
45.He, J., Morris, W.L., Sridhar, N., Shaw, M.C., and Mather, J.C., Adv. Microelectron. (9) (1998) p. 37.Google Scholar
46.Shaw, M.C., in Comprehensive Composite Materials, edited by Kelly, A. and Zweben, C. (2000) p. 285.CrossRefGoogle Scholar
47.Ashby, M.F. and Jones, D.R.H., Engineering Materials: An Introduction to Their Properties and Applications, International Series on Materials Science and Technology, Vol. 34 (Pergamon Press, Oxford, 1980).Google Scholar
48.ASM International, Metals Handbook, 9th ed., Failure Analysis and Prevention, Vol. 11 (American Society for Metals, Metals Park, OH, 1986).Google Scholar
49.Barrett, C.R., Nix, W.D., and Tetelman, S.S., The Principles of Engineering Materials (Prentice Hall, Englewood Cliffs, NJ, 1973).Google Scholar
50.Kanninen, M.F. and Popelar, C.H., Advanced Fracture Mechanics (Oxford, New York, 1985).Google Scholar
51.Hertzberg, R.W., Deformation and Fracture Mechanics of Engineering Materials, 2nd ed. (John Wiley & Sons, New York, 1983).Google Scholar
52.Lawn, B. and Wilshaw, T., Fracture of Brittle Solids (Cambridge University Press, Cambridge, UK, 1979).Google Scholar
53.Stipan, P.M., Beihoff, B.C., and Shaw, M.C., in IEEE Handbook on Electronic Packaging, edited by Blackwell, G. (CRC Press, Boca Raton, FL, 1999) p. 15.1.Google Scholar
54.Harman, G., Reliability and Yield Problems in Wirebonding in Microelectronics (International Society for Hybrid Microelectronics, Reston, VA, 1991).Google Scholar
55.Schafft, H.A., Testing and Fabrication of Wirebond Electrical Connections: A Comprehensive Survey, Technical Note 726 (National Bureau of Standards, 1972).CrossRefGoogle Scholar
56.Trigwell, S., Solid State Technol. (May 1993) p. 45.Google Scholar
57.Pitt, V.A. and Needes, C.R.S., IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-5 (4) (1982).Google Scholar
58.Olsen, D.R. and James, K.L., IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-7 (4) (1984).Google Scholar
59.Pecht, M., Dasgupta, A., and Lali, P., in Proc. Int. Soc. for Hybrid Microelectronics (Baltimore, 1989) p. 607.Google Scholar
60.Nesheim, J.K., in Proc. 1984 Int. Symp. on Microelectronics (ISSHM) (Dallas, TX, 1984).Google Scholar
61.James, K., IEEE Trans. Parts, Hybrids, Packag. PHP-13 (1977).Google Scholar
62.Harman, G.G. and Wilson, C.L., in Electronic Packaging Materials Science IV, edited by Jaccodine, R., Jackson, K.A., Lilley, E.D., and Sundahl, R.C. (Mater. Res. Soc. Symp. Proc. 154, Warrendale, PA, 1989) p. 401.Google Scholar
63.Pitt, V.A. and Needes, C.R.S., IEEE Trans. Components, Hybrids, Manuf. Technol. CHMT-10 (1987).Google Scholar
64.Harman, G.G., in Proc. 12th Int. Reliability Physics Symp. (1974) p. 131.Google Scholar
65.Ravi, K.V. and Philosky, E.M., in Proc. 10th Annu. Int. Reliability Physics Symp. (1972).Google Scholar
66.Onuki, J. and Koizumi, M., in Proc. 7th Int. Symp. on Power Semiconductor Devices and ICs (IPSD ′95) (Yokohama, Japan).Google Scholar
67.Barlow, F., Adv. Microelectron. (July/August 2001) p. 11.Google Scholar
68.Liu, X. and Lu, G.-Q., Adv. Microelectron. (July/August 2001) p. 17.Google Scholar
69.Matsuda, H., Hiyoshi, M., and Kawamura, N., in Proc. Int. Symp. on Power Semiconductor Devices (1997) p. 17.Google Scholar
70.Minehane, S., Duane, R., O'Sullivan, P., McCarthy, K.G., and Mathews, A., Microelectron. Relia. 40 (2000) p. 1285.CrossRefGoogle Scholar
72.Evans, J. and Evans, J.Y., IEEE Trans. Components, Packag., Manuf. Technol. 21 (1998) p. 459.Google Scholar
73.Takao, H., Matsumoto, Y., and Ishida, M., Sensors Actuators, A 65 (1998) p. 61.CrossRefGoogle Scholar
74.Gardner, J.W., Microsensors: Principles and Applications (John Wiley & Sons, New York, 1994).Google Scholar
75.Hwang, J.S., Ball Grid Array & Fine Pitch Peripheral Interconnections (Electrochemical Publications, Port Erin, Isle of Man, 1995).Google Scholar
76.Suganama, K., MRS Bull. 26 (2001) pp. 880, 884.CrossRefGoogle Scholar
77.Lead-Free Solder Project Final Report, NCMS Report 0401RE96 (National Center for Manufacturing Sciences, Ann Arbor, MI, 1997).Google Scholar
78.Hwang, J.S., “Solder Materials,” SMT Mag. (2001) p. 60.Google Scholar
79.Hou, Z., Tian, G., Hatcher, C., and Johnson, R.W., Adv. Microelectron. (March/April 2002) p. 7.Google Scholar
80. “Guide to Lead-Free Soldering,” SMT Mag. (June 2001).Google Scholar
81.Kang, S.K., “Recent Progress in Pb-Free Solders and Soldering Technologies,” J. Met. (2001) p. 16.Google Scholar
82.Gayle, F.W., Becka, G., Badgett, J., Whitten, G., Pan, T.Y., Grusd, A., Bauer, B., Lathrop, R., Slattery, J., Anderson, I., Foley, J., Gickler, A., Napp, D., Mather, J., and Olson, C., “High Temperature Lead-Free Solder for Microelectronics,” J. Met. (2001) p. 17.Google Scholar
83.Frear, D.R., Jang, J.W., Lin, J.K., and Zhang, C., “Pb-Free Solders for Flip-Chip Interconnects,” J. Met. (2001) p. 28.Google Scholar
84.Eastman, L.F. and Mishra, U.K., IEEE Spectrum (May 2002) p. 28.CrossRefGoogle Scholar
85.McCluskey, F.P., Grzybowski, R., and Podlesak, E., eds., High Temperature Electronics (CRC Press, New York, 1997).Google Scholar
86.Brown, E.R., Solid-State Electron. 42 (12) (1998) p. 2119.CrossRefGoogle Scholar
87.Waldrop, J., Warren, L. Jr, Zok, F., Yang, J., McNulty, J., McKie, A.D.W., and Shaw, M.C., “High-Temperature Packaging of High-Power Electronics” (2002) unpublished manuscript.Google Scholar
88.Chen, Y.-C. and Lee, C.C., Thin Solid Films 283 (1996) p. 243.CrossRefGoogle Scholar
89.Lee, C.C. and Matijasevic, G., IEEE Trans. Components, Hybrids, Manuf. Technol. 16 (3) (1993) p. 311.Google Scholar
90.Hou, M.M. and Eagar, T.W., J. Electron. Packag. 114 (1992) p. 443.CrossRefGoogle Scholar
91.Onuki, J., Satou, M., Murakami, S., and Yatsuo, T., IEEE Trans. Electron Devices 44 (12) (1997) p. 2154.CrossRefGoogle Scholar
92.ASM Handbook of Phase Diagrams (American Society for Metals, Metals Park, OH).Google Scholar
93.Harris, J.H., “Sintered Aluminum Nitride Ceramics for High-Power Electronic Applications,” J. Met. (1998) p. 56.Google Scholar
94.White, D., Keck, S.D., and Nakanishi, T.G., in Proc. 29th Int. PCIM Conf. (Europe) (1996) p. 341.Google Scholar
95.Zweban, C., “Overview: Advances in Composite Materials for Thermal Management in Electronic Packaging,” J. Met. (1998) p. 47.Google Scholar
96.Strydom, J.T., van Wyk, J.D., and Ferreira, A., IEEE Trans. Ind. Appl. 37 (2) (2001) p. 820.CrossRefGoogle Scholar
97.Strydom, J.T. and van Wyk, J.D., in Applied Power Electronics Conf. Record, APEC ′02, session 8 (March 2002).Google Scholar
98.Chen, R., Strydom, J.T., and van Wyk, J.D., in Proc. Industry Applications Soc. Conf., IAS ′01, Vol. 4 (2001) p. 2232.Google Scholar
99.Juzkow, M., Power Electron. Technol. (February 2002) p. 58.Google Scholar