Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T13:37:52.339Z Has data issue: false hasContentIssue false

Chemical Vapor Deposition of Copper for IC Metallization: Precursor Chemistry and Molecular Structure

Published online by Cambridge University Press:  29 November 2013

Get access

Extract

In the microelectronics industry, integrated circuit (IC) device performance is continually increasing while the critical feature sizes are rapidly decreasing. Since this trend is expected to continue for future generations of ICs, areal density constraints often require that circuit designs utilize multilevel structures with vertical interconnects. It was recently demonstrated that the resistivity of the metal interconnects may limit device performance in multilevel thin-film structures. Although Al metallurgy (Al/2 wt.% Cu alloy) is extensively used for IC metallization today, lower resistivity metals, such as gold, copper, and silver may be necessary for designs requiring feature sizes of 0.25 μm or less. Chemical vapor deposition (CVD) is an attractive technique for the conformal filling of submicron vertical interconnects. For CVD to be generally applicable to IC fabrication, volatile precursors with adequate stability must be designed and optimized. Lastly, IC metallization typically requires that both uniformity and conformality be achieved simultaneously in a single process step.

Type
Copper Metallization in Industry
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Small, M.B. and Pearson, D.J., IBM J. Res. Dev. 34 (1990) p. 858. Pai, P.L. and Ting, C.H., IEEE Electron Dev. Lett. 10 (1991) p. 423.CrossRefGoogle Scholar
2.Jasinski, J., Meyerson, B.S., and Scott, B.A., Annu. Rev. Phys. 38 (1987) p. 109. Jasinski, J. and Gates, S.M., Acc. Chem. Res. 24 (1991) p. 9.CrossRefGoogle Scholar
3.Kaufman, F.B., Thompson, D.B., Broadie, R.E., Jaso, M.A., Guthrie, W.L., Pearson, D.J., and Small, M.B., J. Electrochem. Soc. 138 (1991) p. 3460; Landis, H., Burke, P., Cote, W., Hill, W., Hoffman, C., Kaanta, C., Koburger, C., Lange, W., Leach, M., and Luce, S., Thin Solid Films 220 (1992) p. 1; Murarka, S.P., Steigerwald, J., and Gutmann, R.J., MRS Bulletin XVIII (6) (1993) p. 46.CrossRefGoogle Scholar
4.Van Hemert, R.L., Spendlove, L.B., and Sievers, R.E., J. Electrochem. Soc. 112 (1965) p. 1123; Moshier, R.W. , Sievers, R.E., and Spendlove, L.B., U.S. Patent No. 3,356,527 (1964).CrossRefGoogle Scholar
5.Sievers, R.E. and Sadlowski, J.E., Science 201 (1978) p. 217; Wolf, W.R., Sievers, R.E., and Brown, G.H., Inorg. Chem. 11 (1972) p. 1995; Richardson, M.F. and Sievers, R.E., Inorg. Chem. 10 (1971) p. 498.CrossRefGoogle Scholar
6.Thomas, B.G., Morris, M.L., and Hilderbrandt, R.L., J. Mol. Struct. 35 (1976) p. 241.CrossRefGoogle Scholar
7.Kaloyeros, A.E. and Fury, M.A., MRS Bulletin XVIII (6) (1993) p. 22.CrossRefGoogle Scholar
8.Gafney, H.D. and Lintvedt, R.L., J. Am. Chem. Soc. 93 (1971) p. 1623.Google Scholar
9.Chow, Y.L., Buono-Core, G.E., Marciniak, B., and Beddard, C., Can. J. Chem. 61 (1983) p. 801.CrossRefGoogle Scholar
10.Buono-Core, G., Iwai, K., Chow, Y.L., Koyanagi, T., Kaji, A., and Hayami, J., Can. J. Chem. 57 (1979) p. 8.CrossRefGoogle Scholar
11.Houle, F.A., Jones, C.R., Baum, T., Pico, C., and Kovac, C.A., Appl. Phys. Lett. 46 (1985) p. 204; Moylan, C.R., Baum, T.H., and Jones, C.R., Appl. Phys. A 40 (1986) p. 1.CrossRefGoogle Scholar
12.Jones, C.R., Houle, F.A., Kovac, C.A., and Baum, T.H., Appl. Phys. Lett. 46 (1985) p. 97; Marinero, E.E. and Jones, C.R., J. Chem. Phys. 82 (1985) p. 1608.CrossRefGoogle Scholar
13.Kovac, C.A., Jones, C.R., Houle, F.A., and Baum, T.H. (1984) unpublished.Google Scholar
14.Gillard, R.D. and Wilkinson, G., J. Chem. Soc. (1963) p. 5885; Walker, W.R. and Li, N.C., J. Inorg. Nucl. Chem. 27 (1965) p. 2255; Li, N.C., Wang, S.M., and Walker, W.R., J. Inorg. Nucl. Chem. 27 (1965) p. 2263.CrossRefGoogle Scholar
15.Partenheimer, W. and Drago, R.S., Inorg. Chem. 9 (1970) p. 47; Kidd, M.R. , Sager, R.S., and Watson, W.H., Inorg. Chem. 6 (1967) p. 946; Baranwal, B.P., Parashar, G.K., and Mehrotra, R.C., Z. Naturforsch. 36B (1981) p. 42; Kogane, T., Yukawa, H., and Hirota, R., Chem. Lett. (1974) p. 477.CrossRefGoogle Scholar
16.Houle, F.A., Wilson, R.J., and Baum, T.H., J. Vac. Sci. Technol. A 4 (1986) p. 2452; Wilson, R.J. and Houle, F.A., Phys. Rev. Lett. 55 (1985) p. 2184.CrossRefGoogle Scholar
17.Temple, D. and Reisman, A., J. Electrochem. Soc. 136 (1989) p. 3525.CrossRefGoogle Scholar
18.Kaloyeros, A.E., Feng, A., Garhart, J., Brooks, K.C., Ghosh, S.K., Saxena, A.N., and Luehrs, F., J. Electron. Mater. 19 (1990) p. 271.CrossRefGoogle Scholar
19.Arita, R., Awaya, N., Amazawa, T., and Matsuda, T., Proc. IEDM (1989) p. 893.Google Scholar
20.Gai, W.G., Xie, Y., and Griffin, G.L., J. Electrochem. Soc. 138 (1991) p. 3499.Google Scholar
21.Kim, D-H., Wentorf, R.H. arid Gill, W.N., J. Electrochem. Soc. 140 (1993) p. 3273; J. Appl. Phys. 74 (1993) p. 5164; J. Electrochem. Soc. 140 (1993) p. 3267.CrossRefGoogle Scholar
22.Kim, D-H., Wentorf, R.H., and Gill, W.N., J. Vac. Sci. Technol. A 12 (1994) p. 153.CrossRefGoogle Scholar
23.Awaya, N. and Arita, Y., J. Electron. Mater. 21 (1992) p. 959.CrossRefGoogle Scholar
24.Lecohier, B., Philippoz, J-M., Calpini, B., Stumm, T., and Van den Bergh, H., J. Phys. IV (Paris) C2 (1991) p. 279.Google Scholar
25.Arita, Y. (1992) personal communication.Google Scholar
26.Prasad, J., Nuesca, G.M., and Kelber, J.A., presented at Symposium W, Materials Research Society Meeting, Boston, MA, November 30, 1993.Google Scholar
27.Cohen, S.L., Liehr, M., and Kasi, S., J. Vac. Sci. Technol. A 10 (1992) p. 863; Cohen, S.L., Liehr, M., and Kasi, S., Appl. Phys. Lett. 60 (1992) p. 50; Cohen, S.L., Liehr, M., and Kasi, S., Appl. Phys. Lett. 60 (1992) p. 1585.CrossRefGoogle Scholar
28.Donnelly, V.M. and Gross, M.E., J. Vac. Sci. Technol. A 11 (1993) p. 66.CrossRefGoogle Scholar
29.Dubois, L.H. and Zegarski, B.R., J. Electrochem. Soc. 139 (1992) p. 3295; Girolami, G.S., Jeffries, P.M., and Dubois, L.H., J. Am. Chem. Soc. 115 (1993) p. 1015.CrossRefGoogle Scholar
30.Fine, S.M., Dyer, P.N., Norman, J.A.T., Muratore, B.A., and Iampietro, R.L., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L.V., Jensen, K.F., Dubois, L.H., and Gross, M.E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PA, 1990) p. 415.Google Scholar
31.Charles, R.G. and Cleary, J.G., U.S. Patent No. 3,594,216 (1971).Google Scholar
32.Gerfin, T., Becht, M. and Dahmen, K-H., Mater. Sci. Eng. B 17 (1993) p. 97.CrossRefGoogle Scholar
33.Wilkinson, G. and Piper, T.S., J. Inorg. Nucl. Chem. 2 (1956) p. 32.CrossRefGoogle Scholar
34.Cotton, F.A. and Marks, T.J., J. Am. Chem. Soc. 92 (1970) p. 5114.CrossRefGoogle Scholar
35.Hampden-Smith, M.J., Kodas, T.T., Paffett, M., Farr, J.D., and Shin, H-K., Chem. Mater. 2 (1990) p. 636.CrossRefGoogle Scholar
36.Beach, D.B., LeGoues, F.K., and Hu, C-K., Chem. Mater. 2 (1990) p. 216; Depuy, C.G., Beach, D.B., Hurst, J.E., and Jasinski, J.E., Chem. Mater. 1 (1989) p. 16; Beach, D.B., IBM J. Res. Dev. 34 (1990) p. 795.CrossRefGoogle Scholar
37.Saegusa, T., Ito, Y., and Tomita, S., J. Am. Chem. Soc. 93 (1971) p. 5656.CrossRefGoogle Scholar
38.Blessman, D., Grafe, A., Heinen, R., Jansen, F., Kruck, T., and Terfloth, C., Mater. Sci. Eng. B 17 (1993) p. 104.CrossRefGoogle Scholar
39.Greiser, T. and Weiss, E., Chem. Ber. 109 (1976) p. 3142.CrossRefGoogle Scholar
40.Jeffries, P.M. and Girolami, G.S., Chem. Mater. 1 (1989) p. 8.CrossRefGoogle Scholar
41.Gross, M.E., J. Electrochem. Soc. 138 (1991) p. 2422.CrossRefGoogle Scholar
42.Nast, R. and Lepel, W-H., Chem. Ber. 102 (1969) p. 3224; Nast, R., Mohr, R., and Schultze, C., Chem. Ber. 96 (1963) p. 2127.CrossRefGoogle Scholar
43.Doyle, G., Ericksen, K.A., and Van Engen, D., Organometallics 4 (1985) p. 830.CrossRefGoogle Scholar
44.Baum, T.H., Larson, C.E., and Reynolds, S.K., U.S. Patent No. 5,096,737 (1992); U.S. Patent No. 5,220,044 (1993).Google Scholar
45.Reynolds, S.K., Smart, C.J., Baran, E.F., Baum, T.H., Larson, C.E., and Brock, P.J., Appl. Phys. Lett. 59 (1992) p. 2332.CrossRefGoogle Scholar
46.Baum, T.H., Larson, C.E., Brock, P.J., Reynolds, S.K., Smart, C.J., and Baran, E.F. (1994) manuscript in preparation.Google Scholar
47.Baum, T.H. and Larson, C.E., J. Electrochem. Soc. 140 (1993) p. 154.CrossRefGoogle Scholar
48.Chi, K-M., Corbitt, T.S., Hampden-Smith, M.J., Kodas, T.T., and Duesler, E.N., J. Organomet. Chem. 449 (1993) p. 181.CrossRefGoogle Scholar
49.Norman, J.A.T., Mutamore, B.A., Dyer, P.N., Roberts, D.A., and Hochberg, A.K., J. Phys. (Paris) IV (1991) p. C2271; Norman, J.A.T., Mutamore, B.A., Dyer, P.N., Roberts, D.A., Hochberg, A.K., and Dubois, L.H., Mater. Sci. Eng. B 27 (1993) p. 87.Google Scholar
50.Gladfelder, W.L., Chem. Mater. 5 (1993) p. 1372.CrossRefGoogle Scholar
51.Jain, A., Chi, K-M., Kodas, T.T., and Hampden-Smith, M.J., J. Electrochem. Soc. 140 (1993) p. 1434.CrossRefGoogle Scholar
52.Gelatos, A.V., Marsh, R., Kottke, M., and Mogab, C.J., Appl. Phys. Lett. 63 (1993) p. 2842.CrossRefGoogle Scholar
53.Stumm, T.H. and van der Bergh, H., Mater. Sci. Eng. B 23 (1994) p. 48.CrossRefGoogle Scholar
54.Jain, A., Farkas, J., Kodas, T.T., Chi, K-M., and Hampden-Smith, M.J., Appl. Phys. Lett 61 (1992) p. 2662; Jain, A., Kodas, T.T., Jairath, R., and Hampden-Smith, M.J., J. Vac. Sci. Technol. B 11 (1993) p. 2107.CrossRefGoogle Scholar
55.Doppelt, P., Ricard, L., and Baum, T.H. (1994) manuscript in preparation.Google Scholar
56.Doppelt, P. and Baum, T.H. (1994) unpublished.Google Scholar
57.Shin, H-K., Chi, K-M., Hampden-Smith, M.J., Kodas, T.T., Farr, J.D., and Paffett, M.F., Chem. Mater. 4 (1992) p. 788.CrossRefGoogle Scholar
58.Shin, H-K., Chi, K-M., Farkas, J., Hampden-Smith, M.J., Kodas, T.T., and Duesler, E.N., Inorg. Chem. 31 (1992) p. 424.CrossRefGoogle Scholar
59.Doppelt, P. and Baum, T.H., J. Organomet. Chem. (1994) submitted.Google Scholar
60.Jain, A., Chi, K-M., Kodas, T.T., Hampden-Smith, M.J., Farr, J.D., and Paffett, M.F., Chem. Mater. 3 (1991) p. 995.CrossRefGoogle Scholar
61.Shin, H-K., Hampdem-Smith, M.J., Kodas, T.T., and Duesler, E.N., Polyhedron 10 (1991) p. 645.CrossRefGoogle Scholar
62.Chi, K-M., Shin, H-K., a, and Duesler, E.N., Polyhedron 10 (1991), p. 2293.CrossRefGoogle Scholar
63.Kumar, R., Fronczek, F.R., Maverick, A.W., Lai, W.G., and Griffin, G.F., Chem. Mater. 4 (1992) p. 577.CrossRefGoogle Scholar
64.Bailey, A., Corbitt, T.S., Hampden-Smith, M.J., Duesler, E.N., and Kodas, T.T., Polyhedron 12 (1993) p. 1785.CrossRefGoogle Scholar
65.Baum, T.H. and Larson, C.E., Chem. Mater. 4 (1992) p. 365.CrossRefGoogle Scholar
66.Chi, K-M., Shin, H-K., Hampden-Smith, M.J., Kodas, T.T., and Duesler, E.N., Inorg. Chem. 30 (1991) p. 4293.CrossRefGoogle Scholar
67.Salomon, R.G. and Kochi, J.K., J. Organomet. Chem. 43 (1972) p. C7; J. Am. Chem. Soc. 95 (1973) p. 1889; J. Organomet. Chem. 64 (1974) p. 135.CrossRefGoogle Scholar
68.Mason, R., Chem. Soc. Rev. 1 (1972) p. 441.CrossRefGoogle Scholar
69.Dewar, M.J.S., Bull. Chem. Soc. Fr. 18 (1951) p. C79; Chatt, J. and Duncanson, L.A., J. Chem. Soc. (1953) p. 2939.Google Scholar
70.Cooper, D.G., Hughes, R.P., and Powell, J., J. Am. Chem. Soc. 94 (1972) p. 9244.CrossRefGoogle Scholar
71.Baum, T.H., Larson, C.E., and May, G., J. Organomet. Chem. 425 (1992) p. 189.Google Scholar
72.Albright, T.A., Tetrahedron 38 (1982) p. 1339.CrossRefGoogle Scholar
73.Baum, T.H. and Doppelt, P. (1994) manuscript in preparation.Google Scholar
74.Baum, T.H. and Larson, C.E. (1992) unpublished.Google Scholar
75.Wolf, W.R., Sievers, R.E., and Brown, G.H., Physicochemical Measurements of Metal β-Diketonates: Vapor Pressures and Solution Thermodynamics By Gas-Liquid Chromatography, ARL70-0267 (1970).Google Scholar
76.Murarka, S.P., Gutmann, R.J., Kaloyeros, A., and Lanford, W.A., Thin Solid Films 236 (1993) p. 257.CrossRefGoogle Scholar
77.Musher, J.N. and Gordon, R.G., J. Electron. Mater. 220 (1991) p. 1105.CrossRefGoogle Scholar
78.Li, J., Shacham-Diamand, Y., and Mayer, J.W., Mater. Sci. Rep. 9 (1992) p. 1.CrossRefGoogle Scholar
79.Comita, P.B. and Baum, T. H. (1988) unpublished.Google Scholar
80.Li, J., Mayer, J.W., and Colgan, G., J. Appl. Phys. 2820 (1991) p. 2820.CrossRefGoogle Scholar
81.Hu, C-K. (1992) private communication.Google Scholar