Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T08:05:15.407Z Has data issue: false hasContentIssue false

Two modes of bipolar resistive switching characteristics in asymmetric TaOx-based ReRAM cells

Published online by Cambridge University Press:  16 July 2019

Toshiki Miyatani*
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto615-8510, Japan
Yusuke Nishi
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto615-8510, Japan
Tsunenobu Kimoto
Affiliation:
Department of Electronic Science and Engineering, Kyoto University, Kyoto615-8510, Japan
*
Get access

Abstract

Impacts of a forming process on bipolar resistive switching (RS) characteristics in Pt/TaOx/Ta2O5/Pt cells were investigated. We found that the forming resulted in a transition from an initial state to a particular high resistance state (HRS) in most of the Pt/TaOx/Ta2O5/Pt cells. Evaluation of electrical characteristics after the transition to the particular HRS revealed that two modes of bipolar RS with the conventional polarity based on valence change mechanism and with the opposite polarity could be selectively obtained by adjusting the magnitude of the applied voltage. Moreover, the cell resistance decreased gradually during set processes in the bipolar RS with the opposite polarity.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lacuna, Y., Bengio, Y., and Hinton, G., Nature, 521, 436 (2015).CrossRefGoogle Scholar
Burra, G. W., Shelbya, R. M., Sebastianb, A., Kimc, S., Kimc, S., Sidlerd, S., Virwania, K., Ishiie, M., Narayanana, P., Fumarolaa, A., Sanchesa, L. L., Boybatb, I., Gallob, M. L., Moonf, K., Woof, J., Hwang, H., and Leblebicid, Y., Adv. Phys. X, 2, 89 (2017).Google Scholar
Gedrim, R. B. J., Agarwal, S., Goeke, R. S., Smith, C., Finnegan, P. S., Niroula, J., Hughart, D. R., Kotula, P. G., James, C. D., and Marinella, M. J., J. Appl. Phys. 124, 202101 (2018).CrossRefGoogle Scholar
Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., and Lu, W., Nano Lett. 10, 1297 (2010).CrossRefGoogle Scholar
Rajendran, B. and Alibart, F., IEEE Trans. Emerg. Sel. Topics Circuits Syst. 6, 198 (2016).CrossRefGoogle Scholar
Hasegawa, T., Terabe, K., Tsuruoka, T., and Aono, M., Adv. Mater. 24, 252 (2012).CrossRefGoogle Scholar
Ielmini, D., Microelectronic Engineering, 190, 44 (2018).CrossRefGoogle Scholar
Yao, P., Wu, H., Gao, B., Eryilmaz, S. B., Huang, X., Zhang, W., Zhang, Q., Deng, N., Shi, L., Wong, H.-S. P., and Qian, H., Nat. Commun. 8, 15199 (2017).CrossRefGoogle Scholar
Yang, J. J., Strukov, D. B., and Stewart, D. R., Nat. Nanotechnol. 8, 13 (2013).CrossRefGoogle Scholar
Wang, Z., Yin, M., Zhang, T., Cai, Y., Wang, Y., Yang, Y., and Huang, R., Nanoscale, 8, 14015 (2016).CrossRefGoogle ScholarPubMed
Ambrogio, S., Balatti, S., Nardi, F., Facchinetti, S., and Ielmini, D., Nanotechnology, 24, 384012 (2013).CrossRefGoogle Scholar
Prakash, A., Park, J., Song, J., Woo, J., Cha, E.-J., and Hwang, H., IEEE Electron Device Lett. 36, 32 (2015).CrossRefGoogle Scholar
Chen, J., Lin, C.-Y., Li, Y., Qin, C., Lu, K., Wang, J.-M., Chen, C.-K., He, Y.-H., Chang, T.-C., Sze, S. M., and Miao, X.-S., IEEE Electron Device Lett. 40, 542 (2019).CrossRefGoogle Scholar
Nishi, Y., Sasakura, H., and Kimoto, T., J. Mater. Res. 32, 2631 (2017).CrossRefGoogle Scholar
Sasakura, H., Nishi, Y., and Kimoto, T., Appl. Phys. Lett. 107, 233510 (2015).CrossRefGoogle Scholar
Matsui, R., Nishi, Y., and Kimoto, T., presented at the 2018 Mater. Res. Soc. Spring Meeting, Phoenix, AZ, 2018, EP01.07.05.Google Scholar
Pan, F., Gao, S., Chen, C., Song, C., and Zeng, F., Mater. Sci. Eng. R. 83, 1 (2014).CrossRefGoogle Scholar
Yang, J. J., Inoue, I. H., Mikolajick, T., and Hwang, C. S., Mater. Res. Soc. 37, 131 (2012).CrossRefGoogle Scholar
Sune, J., IEEE Electron Device Lett. 22, 296 (2001).CrossRefGoogle Scholar
Cooper, D., Baeumer, C., Bernier, N., Marchewka, A., Torre, C. L., -Borkowski, R. E. D., Menzel, S., Waser, R., and Dittmann, R., Adv. Mater. 29, 1700212 (2017).CrossRefGoogle Scholar
Schönhals, A., Rosário, C. M. M., Eifert, S. H., Waser, R., Menzel, S., and Wouters, D. J., Adv. Electron. Mater. 4, 1700243 (2018).CrossRefGoogle Scholar
Zhang, H., Yoo, S., Menzel, S., Funck, C., Cüppers, F., Wouters, D. J., Hwang, C. S., Waser, R., and Eifert, S. H., ACS Appl. Mater. Interfaces, 10, 29766 (2018).CrossRefGoogle ScholarPubMed