Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T19:47:31.086Z Has data issue: false hasContentIssue false

Performance of hydrogenated diamond MISFET using Zr-Si-N as the dielectric layer

Published online by Cambridge University Press:  14 August 2017

Pengfei Zhang
Affiliation:
College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China Institute of wide band gap semiconductors, Xi’an Jiaotong University, Xi’an, China
Shufang Yan
Affiliation:
College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Wei Wang
Affiliation:
Institute of wide band gap semiconductors, Xi’an Jiaotong University, Xi’an, China
Shujia Zhang
Affiliation:
College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Yanfeng Wang
Affiliation:
Institute of wide band gap semiconductors, Xi’an Jiaotong University, Xi’an, China
Jingjing Wang
Affiliation:
Institute of wide band gap semiconductors, Xi’an Jiaotong University, Xi’an, China
Weidong Chen
Affiliation:
College of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Hong-Xing Wang*
Affiliation:
Institute of wide band gap semiconductors, Xi’an Jiaotong University, Xi’an, China
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To better stabilize the hydrogen-terminated surface, a diamond based metal-insulator-semiconductor field-effect transistor with Zr-Si-N dielectric layer has been investigated. On the diamond epitaxial layer grown by microwave plasma chemical vapor deposition system, Pd films were patterned as the source and drain electrodes by photolithography and electron beam evaporation methods. Then, a Zr-Si-N dielectric layer and W metal film were fabricated as the gate structure by radio frequency magnetron sputtering technique. The device illustrates p-type depletion mode, in which the threshold voltage, maximum transconductance, drain current maximum, capacitance and dielectric constant were calculated to be 3.0V, 1.27mS/mm, -5.16 mA/mm, 0.275μF/cm2 and 7.8, respectively. The result suggest that Zr-Si-N dielectric layer is shown to have the ability to protect the two-dimensional hole gas.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Isberg, J., Hammersberg, J., Johansson, E., Wikstrom, T., Twitchen, D. J., Whitehead, A. J., Coe, S. E., Scarsbrook, G. A.. Science. 297, 16701672 (2002).Google Scholar
Umezawa, H., Matsumoto, T., Shikata, S.I. IEEE Electron Device Lett. 35, 1112 (2014).Google Scholar
Tromson, D., Rebisz-Pomorska, M., Tranchant, N., Isambert, A., Moignau, F., Moussier, A., Marczewska, B., Bergonzo, P. Diam. Relat. Mater. 19, 10121016 (2010).Google Scholar
Ozpineci, B., Tolbert, L.M., Islam, S.K., Chinthavali, M., in: European Conference on Power Electronics and Applications, Toulouse, France, 2003.Google Scholar
Kasu, M., Ueda, K., Ye, H., Yamauchi, Y., Sasaki, S., Makimoto, T., Diam. Relat. Mater. 15, 783786 (2006).Google Scholar
Hirama, K., Sato, H., Harada, Y., Yamamoto, M. Kazu. J. Appl. Phys. 51, 080112 (2012).CrossRefGoogle Scholar
Hayashi, K., Yamanaka, S., Okushi, H. and Kajimura, K. Appl. Phys. Lett. 68, 376 (1996).Google Scholar
Kawarada, Hiroshi. Surface Science Reports. 26, 205259 (1996).Google Scholar
Ueda, K, Kasu, M, Yamauchi, Y, Makimoto, T, Schwitters, M, Twitchen, D. J, Scarsbrook, G.A, Coe, S.E. IEEE Electron Device Letters. 27, 570572 (2006).Google Scholar
Kasu, M, Ueda, K, Ye, H, Yamauchi, Y, Sasaki, S, Makimoto, T. Electronics Letters. 41, 12491250 (2005).Google Scholar
Kueck, D., Schmidt, A., Denisenko, A. and Kohn, E. Diam. Relat. Mater. 19, 166170 (2010).Google Scholar
Saito, T., Park, K.H., Hirama, K., J. Electron. Mater. 40, 247 (2011).Google Scholar
Daicho, A., Saito, T., Kurihara, S., Hiraiwa, A., Kawarada, H. J. Appl. Phys. 115, 1033 (2014) .Google Scholar
Kueck, D., Scharpf, J., Ebert, W., Fikry, M., Scholz, F., Kohn, E. Phys. Status Solidi A. 207, 20352039 (2010).Google Scholar
Liu, J.W., Liao, M.Y., Imura, M., Koide, Y. Appl. Phys. Lett. 103, 092905 (2013).CrossRefGoogle Scholar
Winkelmann, A., Cairney, J.M, Hoffman, M.J., Martin, P.J, Bendavid, A. Surface and Coatings Technology. 200, 4213–1219 (2006).CrossRefGoogle Scholar
Nose, M., Zhou, M., Nagae, T., Mae, T., Yokota, M., Saji, S. Surface and Coatings Technology. 132, 163168 (2000).Google Scholar
Song, Z.X., Xu, K.W., Chen, H. Thin Solid Films. 468, 203207 (2004).Google Scholar
Wang, W., Hu, C., Li, F.N., Li, S. Y., Liu, Z.C., Wang, F., Fu, J., Wang, H. X. Diam. Relat. Mater. 59, 9094 (2015).Google Scholar
Schroder, D.K., Semiconductor Material and Device Characterization (Wiley-IEEE Press, New York, 1990) pp. 208.Google Scholar