Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T22:43:33.903Z Has data issue: false hasContentIssue false

Electrical study of radiation hard designed HfO2-based 1T-1R RRAM devices

Published online by Cambridge University Press:  12 December 2016

Eduardo Pérez*
Affiliation:
IHP GmbH/Leibniz-Institut für Innovative Microelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
Florian Teply
Affiliation:
IHP GmbH/Leibniz-Institut für Innovative Microelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
Christian Wenger
Affiliation:
IHP GmbH/Leibniz-Institut für Innovative Microelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
*
Get access

Abstract

In this work the electrical performance of a radiation hard designed 1T-1R resistive random access memory (RRAM) device is investigated in DC (voltage sweep) and AC (pulsed voltage) modes. This new device is based on the combination of an Enclosed Layout Transistor (ELT) used as selector device and a TiN/ HfO2/ Ti/TiN RRAM stack used as resistive device. The high cell to cell variability in the DC mode makes it difficult to define an electrical gap between the High Resistive State (HRS) and the Low Resistive State (LRS). The strong reduction of the variability by the use of Incremental Step Pulse with Verify Algorithm (ISPVA) makes the later a mandatory programming approach. The Quantum Point Contact (QPC) model defines an energy barrier located in the rupture point of the filament in HRS. The compensation between the width and height variations of this barrier during cycling could explain the stability of HRS and LRS. The good performance of the proposed device using the ISPVA programming approach makes it a good candidate for Rad-Hard Non Volatile Memories integration.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chen, D., Kim, H., Phan, A., Wilcox, E., LaBel, K., Buchner, S., Khachatrian, A., and Roche, N., IEEE Trans. on Nuclear Science 61, 30883094 (2014).Google Scholar
Waser, R., and Aono, M., Nature Mater. 6, 833840 (2007).Google Scholar
Lin, K.-L., Hou, T.-H., Shieh, J., Lin, J.-H., Chou, C.-T., and Lee, Y.-J., J. of Appl. Phys. 109, 084104 (2011).Google Scholar
Grossi, A., Zambelli, C., Olivo, P., Miranda, E., Stikanov, V., Schroeder, T., Walczyk, C., and Wenger, C., in IEEE Int. Memory Workshop, (2015), pp. 14.Google Scholar
Weeden-Wright, S., Bennett, W., Hooten, N., Zhang, E. X., McCurdy, M., King, M., Weller, R., Mendenhall, M., Alles, M., Linten, D., Jurczak, M., Degraeve, R., Fantini, A., Reed, R., Fleetwood, D., and Schrimpf, R., IEEE Trans. on Nuclear Science 61, 29722978 (2014).Google Scholar
Xue, F., Ping, L., Wei, L., Bin, Z., Xiaodong, X., Gang, W., Bin, H., and Yahong, Z., J. of Semicond. 32, 084002 (2011).Google Scholar
Chen, F., Lee, H., Chen, Y., Hsu, Y., Zhang, L., Chen, P., Chen, W., Gu, P., Liu, W., Wang, S., Tsai, C., Sheu, S., Tsai, M., and Huang, R., Sci. China Inf. Sci. 54, 10731086 (2011).Google Scholar
Higuchi, K., Iwasaki, T., and Takeuchi, K., in IEEE Int. Memory Workshop, (2012), pp. 14.Google Scholar
Grossi, A., Zambelli, C., Olivo, P., Miranda, E., Stikanov, V., Walczyk, C., and Wenger, C., Solid State Electron. 115, 1725 (2016).Google Scholar
Miranda, E., Walczyk, C., Wenger, C., and Schroeder, T., IEEE Electron Dev. Lett. 31, 609 (2010).Google Scholar
Miranda, E., Jimenez, D., and Sune, J., IEEE Electron Dev. Lett. 33, 1474 (2012).Google Scholar
Prócel, L.M., Trojman, L., Moreno, J., Crupi, F., Maccaronio, V., Degraeve, R., Goux, L., and Simoen, E., J. of Appl. Phys. 114, 074509 (2013).Google Scholar
Grossi, A., Perez, E., Zambelli, C., Olivo, P., and Wenger, Ch., in EUROSOI Workshop, (2016).Google Scholar
Pérez, E., Wenger, Ch., Grossi, A., Zambelli, C., Olivo, P., and Roelofs, R., J. of Vac. Sci. and Technol. B 35, 01A103 (2017).Google Scholar