Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T20:04:48.988Z Has data issue: false hasContentIssue false

Effect of Displacement Damage on Tantalum Oxide Resistive Memory

Published online by Cambridge University Press:  13 June 2017

Joshua S. Holt*
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, U.S.A.
Karsten Beckmann
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, U.S.A.
Zahiruddin Alamgir
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, U.S.A.
Jean Yang-Scharlotta
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology, NASA, Pasadena, CA, 91109, U.S.A.
Nathaniel C. Cady
Affiliation:
Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, U.S.A.
*
Get access

Abstract

The radiation environment of space poses a challenge for electronic systems, in particular flash memory, which contains multiple radiation-sensitive parts. Resistive memory (RRAM) devices have the potential to replace flash memory, functioning as an inherently radiation resistant memory device. Several studies indicate significant radiation resistance in RRAM devices to a broad range of radiation types and doses. In this study, we focus on the effect of displacement damage on tantalum oxide-based RRAM devices, as this form of damage is likely a worst-case scenario. An Ar+ (170 keV) ion beam was used to minimize any contribution from ionization damage, maximizing the effect of displacement damage. Fluence levels were chosen to generate enough oxygen vacancies such that devices in the high resistance state (HRS) would likely switch to the low resistance state (LRS). More than half of devices tested at the highest fluence level (1.43E13 ions/cm2) switched from HRS to LRS. The devices were then switched for 50 set/reset cycles, after which the radiation-induced resistance shift disappeared. These results suggest that device switching may mitigate radiation damage by accelerating oxygen vacancy-interstitial recombination.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Cellere, G., Pellati, P., Chimenton, A., Wyss, J., Modelli, A., Larcher, L., and Paccagnella, A., IEEE Trans. Nucl. Sci. 48(6), 22222228 (2001).Google Scholar
Nguyen, D. N., Guertin, S. M., Swift, G. M., and Johnston, A. H., IEEE Trans. Nucl. Sci. 46(6), 17441750 (1999).Google Scholar
Waser, R., Dittmann, R., Staikov, G., and Szot, K., Adv. Mat. 21 (25-26), 26322663 (2009).CrossRefGoogle Scholar
Hu, W., Zou, L., Gao, C., Guo, Y., and Bao, D., J. Alloys and Comp. 676, 356360 (2016).Google Scholar
Torrezan, A. C., Stachan, J. P., Medeiros-Ribeiro, G., and Williams, R. S., Nanotech. 22(48), 485203 (2011).Google Scholar
Lee, M., Lee, C. B., Lee, D., Lee, S. R., Chang, M., Hur, J. H., Kim, Y., Kim, C., Seo, D. H., Seo, S., Chung, U., Yoo, I., and Kim, K., Nat. Mat. 10(8), 625630 (2011).CrossRefGoogle Scholar
Srour, J. R., Marshall, C. J., and Marshall, P. W., IEEE Trans. Nucl. Sci. 50(3), 653670 (2003).Google Scholar
Luo, W. C., Hou, T. H., Lin, K. L., Lee, Y. J., and Lei, T. F., Solid-state Elec. 89, 167170 (2013).Google Scholar
Taggart, J. L., Fang, R., Gonzalez-Velo, Y., Barnaby, H. J., Kozicki, M. N., Pacheco, J. L., Bielejec, E. S., McLain, M. L., Chamele, N., Mahmud, A., and Mitkova, M., IEEE Trans. Nucl. Sci.. (2017).Google Scholar
Kim, S., Choi, S., and Lu, W., ACSNano. 8(3), 23692376 (2014).Google Scholar
Prakash, A., Deleruyelle, D., Song, J., Bocquet, M., and Hwang, H., Appl. Phys. Lett. 106(23), 233104 (2015).CrossRefGoogle Scholar
He, X., (College of Nanoscale Science and Engineering, State University of New York at Albany, 2013).Google Scholar
Messenger, S. R., Xapsos, M. A., Burke, E. A., Walters, R. J, and Summers, G. P., IEEE Trans. Nucl. Sci. 44(6), 21692173 (1997).Google Scholar
Hughart, D. R., Lohn, A. J., Mickel, P. R., Dalton, S. M., Dodd, P. E., Shaneyfelt, M. R., Silva, A. I., Bielejec, E., Vizkelethy, G., Marshall, M. T., McLain, M. L., and Marinella, M. J., IEEE Trans. Nucl. Sci. 60(6), 45124519 (2013).Google Scholar
McLain, M. L., Hjalmarson, H. P., Sheridan, T. J., Mickel, P. R., Hanson, D., McDonald, K., Hughart, D. R., and Marinella, M. J.. IEEE Trans. Nucl. Sci. 61(6), 29973004 (2014).Google Scholar
Gao, F., and Weber, W. J., J. Appl. Phys. 94(7), 43484356 (2003).Google Scholar
Jiang, H., and Stewart, D. A., J. Appl. Phys. 119, 134502 (2016).CrossRefGoogle Scholar
Ascoli, A., Tetzlaff, R., Chua, L. O., Strachan, J. P., and Williams, R. S., IEEE Trans. Circ. and Sys. 63(3), 389400 (2016).Google Scholar