Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T22:35:30.811Z Has data issue: false hasContentIssue false

Creating Electrical Bistability Using Nano-bits – Application in 2-Terminal Memory Devices

Published online by Cambridge University Press:  12 January 2017

Iulia Salaoru
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Hawthorn Building, The Gateway, Leicester, LE1 9BH, United Kingdom
Sattam Alotaibi
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Hawthorn Building, The Gateway, Leicester, LE1 9BH, United Kingdom
Zahra Al Halafi
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Hawthorn Building, The Gateway, Leicester, LE1 9BH, United Kingdom
Shashi Paul*
Affiliation:
Emerging Technologies Research Centre, De Montfort University, Hawthorn Building, The Gateway, Leicester, LE1 9BH, United Kingdom
*
1 Contact author’s email: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intensive research is currently underway to exploit the highly interesting properties of nano-bits (“nano-sized particles and molecules”) for optical, electronic and other applications. The basis of these unique properties is the small-size of these structures which result in quantum mechanical phenomena and interesting surface properties. The small molecules and/or nano-particles are selected in such a way so that it can create an internal electric in the nano-composite. We define a nanocomposite is an admixture of small molecules and/or nano-particles and a polymer. We have demonstrated the internal electric field in our devices, made from nano-bits (nano-particles and/or molecules) and insulating materials, can contribute to the electrical bistability i.e. two conductive states.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2017

References

References:

Subianto, S., Dutta, N., Andersson, M., Choudhury, N.R., Adv. Colloid. and Interface Science 235 (2016) 56.CrossRefGoogle Scholar
Soeda, J., Okamoto, T., Mitsui, C., Takeya, J., Organic Electronics: physics, materials, applications 39 (2016) 127.CrossRefGoogle Scholar
Riedel, D., Wehlus, T., Reusch, T.C.G., J.Brabec Organic electronics 32 (2016) 27 CrossRefGoogle Scholar
Jeon, P.J., Lee, K., Young Park, E., Im, S., Bae, H., Organic electronics, 32 (2016) 208.CrossRefGoogle Scholar
Ran, K., Rosner, B., Butz, B., Fink, R.H., Spiecker, E., Nanotechnology 27(42) (2016) 425703.CrossRefGoogle Scholar
Leydecker, T., Herder, M., Pavlica, E., Bratina, G., Hecht, S., Orgiu, E., Samori, P., Nature Nanotech., 11(9) (2016) 769.CrossRefGoogle Scholar
Liu, Y., Li, F., Chen, Z., Guo, T., Wu, C., Kim, T.W., Vacuum 130 (2016) 109. Wei, T., Chen, G.,Google Scholar
Tsao, H-Y, Wang, Y-W, Gao, Z-K, Thin solid Films 612 (2016) 61 CrossRefGoogle Scholar
Kim, M-G., Kanatzidis, M.G., Facchetti, A., Marks, T.J., Nat. Materials, 10 (2011) 382 CrossRefGoogle ScholarPubMed
Zhang, K., Hao, L., Du, M., Mi, J., Wang, J.N., Meng, J-P., Renewable and sustainable energy 67 (2017) 1282.CrossRefGoogle Scholar
Socratous, J., Banger, K.K., Sadhanata, Y., Brown, A.D., Sepe, A., Steiner, U., Sirringhaus, H., Adv.Funct.Mater., 25 (2015) 1873.CrossRefGoogle Scholar
Prime, D., Paul, S., Phil.Trans.R.Soc.A, 367(1905) (2009) 4141.Google Scholar
Chu, C.W., Ouyang, J., Tseng, J.H., Yang, Y., Adv.Mater. 17 (2005) 1440.CrossRefGoogle Scholar
Koo, J.R., Pyo, S.W., Kim, J.H., Jung, S.Y., Yoon, S.S., Kim, T.W., Choi, Y.H., Kim, Y.K., Synth.Metals, 156, (2006), 298,CrossRefGoogle Scholar
Ma, Y., Cao, X., Li, G., Wen, Y., Yang, Y., Wang, J., Du, S., Yang, L., Gao, H., Song, Y., Adv.Funct.Mater., 20, (2010), 803 CrossRefGoogle Scholar
Paul, S, IEEE Transactions on Nanotechnology 6 (2007) 191.CrossRefGoogle Scholar
Salaoru, I., Paul, S., Journal Optoelectronics and Advanced Materials 10(12) (2008) 3461.Google Scholar
Salaoru, I., Paul, S., Advances in Science and Technology 54 (2008) 486.CrossRefGoogle Scholar
Salaoru, I., Paul, S., Phil.Trans.R.Soc.A, 367(1905) (2009) 4227.CrossRefGoogle Scholar
Salaoru, I., Paul, S., Mater. Res. Soc. Symp. Proc., 1114-G12-09 (2009).Google Scholar
Salaoru, I., Paul, S., Mater. Res. Soc. Symp. Proc., 1250-G07-11 (2010).Google Scholar
Salaoru, I., Paul, S., Thin Solid Films, 519 (2010) 559 CrossRefGoogle Scholar
Clemente, D.A., Marzotto, A., J.Mater.Chem. 6(6) (1996) 941.CrossRefGoogle Scholar
Meneghetti, M., Pecille, C., J.Chem.Phys. 105(2) (1996) 397.CrossRefGoogle Scholar
Meneghetti, M., Pecile, C., Synthetic Metals 86 (1997) 2037.CrossRefGoogle Scholar
Clemente, D.A., Pecile, C., Molecular Crystals and Liquid Crystals,121(1-4) (1985) 397.Google Scholar
Bryce, M.R., Advanced Materials 11(1) (1999) 11.3.0.CO;2-3>CrossRefGoogle Scholar
Bryce, M.R., Devonport, W., Goldenberg, L.M., Wang, C., Chem. Commun. 945 (1998)Google Scholar
Miller, J.S., Angew.Chem.Int.Ed. 45 (2006) 2508.CrossRefGoogle Scholar
Alotaibi, S., Gabrielyan, N. and Paul Advances, S. in Science and Technology, vol. 95, pp. 100106, 2014.Google Scholar
Nicollian, E. H., Brews, J. R. and Nicollian, E. H., MOS (Metal Oxide Semiconductor) Physics and Technology. Wiley New York et al. ., 1982.Google Scholar
Saranti, K., Alotaibi, S. and Paul, S., Sci. Rep., vol. 6, pp. 27506, Jun 9, 2016.CrossRefGoogle Scholar