Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T13:24:38.105Z Has data issue: false hasContentIssue false

Phase Transitions in Ge-Sb-Te Alloys Induced by Ion Irradiations

Published online by Cambridge University Press:  21 April 2016

Stefania Privitera*
Affiliation:
Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Catania 95121, Italy.
Antonio M. Mio
Affiliation:
Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Catania 95121, Italy.
Julia Benke
Affiliation:
Physikalisches Institut (IA) and JARA-FIT, RWTH Aachen University, Aachen, Germany.
Christoph Persch
Affiliation:
Physikalisches Institut (IA) and JARA-FIT, RWTH Aachen University, Aachen, Germany.
Emanuele Smecca
Affiliation:
Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Catania 95121, Italy.
Alessandra Alberti
Affiliation:
Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Catania 95121, Italy.
Emanuele Rimini
Affiliation:
Istituto per la Microelettronica e Microsistemi, Consiglio Nazionale delle Ricerche, Catania 95121, Italy. Dipartimento di Fisica, Università di Catania, Catania, Italy.
*
Get access

Abstract

The variation of the electrical and optical properties under 150 keV Ar+ ion irradiation has been studied in Ge2Sb2Te5 polycrystalline films, either in the rocksalt or in the trigonal structure, by in situ reflectivity measurements and ex situ resistance measurements. As the irradiation dose increases, the disorder introduced in the crystalline films increases and the reflectivity decreases, down to a minimum value that corresponds to complete amorphization. Large differences are found by changing the irradiation temperature, for the two crystalline structures. Indeed, the measured amorphization threshold is the same for the two crystalline phases and equal to 1x1013 cm-2 under irradiation at 77K, whilst at room temperature the trigonal phase requires a dose almost double than the rocksalt phase to be amorphized. By structural analyses we found that, before amorphization, ion irradiation induces a transition from the trigonal to the rocksalt structure. The van der Waals gaps present in the trigonal phase might act as preferential sinks for the displaced and mobile atoms, thus promoting this transition. By further increasing the irradiation dose the formed disordered rocksalt phase converts into the amorphous phase. Ion irradiation also affects the electrical properties of the material: the disorder modifies the temperature dependence of resistance of the trigonal Ge2Sb2Te5 and induces a change of sign (from metallic to insulating behavior) at a dose of 2x1013 cm-2, well below the amorphization threshold.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ovshinsky, S. R., Phys. Rev. Lett. 21, 1450 (1968)Google Scholar
Burr, G. W., Breitwisch, M. J., Franceschini, M., Garetto, D., Gopalakrishnan, K., Jackson, B., Kurdi, B., Lam, C., Lasras, L.A., Padilla, A., Rajendran, B., Raoux, S. and Shenoy, R. S., J. Vac. Sci. Technol. B 28, 223 (2010)CrossRefGoogle Scholar
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., and Takao, M., J. Appl. Phys. 69, 2849 (1991)CrossRefGoogle Scholar
Matsunaga, T., Yamada, N., and Kubota, Y., Acta Cryst. B60, 685 (2004)Google Scholar
Siegrist, T., Jost, P., Volker, H., Woda, M., Merkelbach, P., Schlockermann, C. and Wuttig, M., Nat. Mater. 10, 202 (2011)CrossRefGoogle Scholar
Jost, P., Volker, H., Poitz, A., poltorak, C., Zalden, P., Schafer, T., Lange, F. R. L., Schmidt, R. M., Hollander, B., Wirtssohn, M. R., and Wuttig, M., Adv. Funct. Mat. 25, 6399 (2015)CrossRefGoogle Scholar
De Bastiani, R., Piro, A. M., Grimaldi, M. G., Rimini Nucl, E.. Instr. Meth. Phys. Res. B 257, 572 (2007)CrossRefGoogle Scholar
Landauer, R., J. Appl. Phys. 23, 779 (1952)Google Scholar
Bruggeman, D. A. G., Ann. Physik (Leipzig), 24, 636 (1935)Google Scholar
Gibbons, J. F., Proceedings of The IEEE 60, 1062 (1972)Google Scholar
Zhang, W., Thiess, A., Zalden, P., Zeller, R., Dederichs, P. H., Raty, J-Y., Wuttig, M., Blügel, S. and Mazzarello, R., Nat. Mater. 11, 952 (2012)CrossRefGoogle Scholar
Tominaga, J., Shima, T., Fons, P., Simpson, R., Kuwahara, M., and Kolobov, A., Jpn. J. Appl. Phys. 48, 03A053 (2009)CrossRefGoogle Scholar
Wełnic, W., Pamungkas, A., Detemple, R., Steimer, C., Blügel, S., and Wuttig, M., Nat. Mater. 5, 56 (2006)Google Scholar