Hostname: page-component-55f67697df-7l9ct Total loading time: 0 Render date: 2025-05-08T08:58:16.263Z Has data issue: false hasContentIssue false

Pabellóndepicaite, Cu2+2(N3C2H2)2(NH3)2(NO3)Cl·2H2O, a new 1,2,4-triazolate mineral from the guano deposit at Pabellón de Pica, Iquique Province, Chile

Published online by Cambridge University Press:  11 November 2024

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
Gerhard Möhn
Affiliation:
Independent researcher, Niedernhausen, Germany
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA
Joy Désor
Affiliation:
Independent researcher, Bad Homburg, Germany
*
Corresponding author: Anthony R. Kampf; Email: [email protected]

Abstract

The new mineral pabellóndepicaite (IMA2023-104), Cu2+2(N3C2H2)2(NH3)2(NO3)Cl·2H2O, was found in the guano deposit at Pabellón de Pica, Iquique Province, Chile, where it is a secondary phase formed at the contact between an altered guano deposit and a chalcopyrite-bearing gabbro. Pabellóndepicaite occurs on salammoniac in association with antipinite, bojarite, dittmarite, halite, joanneumite, sampleite, struvite, wheatleyite and whewellite. Crystals are rectangular blades or tablets, up to ∼0.2 mm long, flattened on {001} and elongated along [100] and exhibiting the forms {010}, {001}, {011} and {102}. Crystals are indigo blue and transparent, with vitreous lustre and light indigo blue streak. The mineral is brittle with curved and stepped fracture. The Mohs hardness is ∼2½. Cleavage is perfect on {001} and good on {010}. The density is 1.95(2) g·cm–3. Optically, pabellóndepicaite is biaxial (+) with α = 1.583(3), β = 1.596(3) and γ = 1.644(3) (white light). The 2V is 56(2)° with distinct r > v dispersion. The optical orientation is X = a, Y = b, Z = c and the pleochroism is X light indigo blue, Y indigo blue, Z pale indigo blue; Y > X > Z. The empirical formula is Cu2Cl1.25N9C4H13.75O4.75 (with H, C and N calculated based on the structure). Pabellóndepicaite is orthorhombic, space group Pmma, with cell parameters: a = 7.2118(12), b = 9.0983(15), c = 11.128(3) Å, V = 730.2(2) Å3 and Z = 2. The structure (R1 = 6.65% for 482 I > 2σI reflections) contains two types of polyhedral chains (1) a zig-zag chain of CuN4Cl2 octahedra linked by sharing Cl atoms and the N–N edges of 1,2,4-triazolate groups and (2) a chain of CuN4O2 octahedra alternating with NO3 triangles. The chains are linked to one another by 1,2,4-triazolate groups to form layers with isolated H2O groups in their cavities.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: David Hibbs

References

REFERENCE

Bojar, H.-P., Walter, F., Baumgartner, J. and Farber, G. (2010) Ammineite, CuCl2(NH3)2, a new species containing an ammine complex: mineral data and crystal structure. The Canadian Mineralogist, 48, 13591371.Google Scholar
Bojar, H.P., Walter, F. and Baumgartner, J. (2017) Joanneumite, Cu(C3N3O3H2)2(NH3)2, a new mineral from Pabellón de Pica, Chile and the crystal structure of its synthetic analogue. Mineralogical Magazine, 81, 155166.Google Scholar
Brese, N.E., and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford.Google Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Lyssenko, K.A., Belakovskiy, D.I., Färber, G., Möhn, G. and Van, K.V. (2015a) Antipinite, KNa3Cu2(C2O4)4, a new mineral species from a guano deposit at Pabellón de Pica, Chile. Mineralogical Magazine, 79, 11111121.Google Scholar
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Pekov, I.V., Belakovskiy, D.I. and Britvin, S.N. (2015b) Möhnite, (NH4)K2Na(SO4)2, a new guano mineral from Pabellón de Pica, Chile. Mineralogy and Petrology, 109, 643648.Google Scholar
Chukanov, N.V., Britvin, S.N., Möhn, G., Pekov, I.V., Zubkova, N.V., Nestola, F., Kasatkin, A.V. and Dini, M. (2015c) Shilovite, natural copper(II) tetrammine nitrate, a new mineral species. Mineralogical Magazine, 79, 613623.Google Scholar
Chukanov, N.V., Zubkova, N.V., Möhn, G., Pekov, I.V., Pushcharovsky, D.Y. and Zadov, A.E. (2015d) Chanabayaite, Cu2Cl(N3C2H2)2(NH3,Cl,H2O,□)4, a new mineral containing triazolate anion. Geology of Ore Deposits, 57, 712720.Google Scholar
Chukanov, N.V., Zubkova, N.V., Möhn, G., Pekov, I.V., Belakovskiy, D.I., Van, K.V., Britvin, S.N. and Pushcharovsky, D.Y. (2018) Triazolite, NaCu2(N3C2H2)2(NH3)2Cl3·4H2O, a new mineral species containing 1,2,4-triazolate anion, from a guano deposit at Pabellón de Pica, Iquique Province, Chile. Mineralogical Magazine, 82, 10071014.Google Scholar
Chukanov, N.V., Möhn, G., Pekov, I.V., Zubkova, N.V., Ksenofontov, D.A., Belakovskiy, D.I., Vozchikova, S.A., Britvin, S.N. and Desor, J. (2020a) Ammoniotinsleyite, (NH4)Al2(PO4)2(OH)⋅2H2O, a new mineral species from the guano deposit at Pabellón de Pica, Iquique Province, Chile. Mineralogical Magazine, 84, 705711.Google Scholar
Chukanov, N.V., Möhn, G., Zubkova, N.V., Ksenofontov, D.A., Pekov, I.V., Agakhanov, A.A., Britvin, S.N. and Desor, J. (2020b) Bojarite, Cu3(N3C2H2)3(OH)Cl2⋅6H2O, a new mineral species with a microporous metal–organic framework from the guano deposit at Pabellón de Pica, Iquique Province, Chile. Mineralogical Magazine, 84), 921927.Google Scholar
Gagné, O.C. and F.C, Hawthorne. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Haasnoot, J.G. (2000) Mononuclear, oligonuclear and polynuclear metal coordination compounds with 1,2,4-triazole derivatives as ligands. Coordination Chemistry Reviews, 200–202, 131185.Google Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.Google Scholar
Kampf, A.R., Möhn, G., Ma, C. and Désor, J. (2024) Pabellóndepicaite, IMA 2023-104. CNMNC Newsletter 78; Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2024.23Google Scholar
Kuang, J., Chen, B. and Ma, S. (2014) Copper-mediated efficient three-component synthesis of 1, 2, 4-triazoles from amines and nitriles. Organic Chemistry Frontiers, 1, 186189.Google Scholar
Malcherek, T. and Schlüter, J. (2007) Cu3MgCl2(OH)6 and the bond-valence parameters of the OH–Cl bond. Acta Crystallographica, B63, 157160.Google Scholar
Romero, A.H., Sojo, F., Arvelo, F., Calderón, C., Morales, A., and S.E, López. (2020) Anticancer potential of new 3-nitroaryl-6-(N-methyl) piperazin-1, 2, 4-triazolo [3, 4-a] phthalazines targeting voltage-gated K+ channel: Copper-catalyzed one-pot synthesis from 4-chloro-1-phthalazinyl-arylhydrazones. Bioorganic Chemistry, 101, 104031.Google Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal Structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Shields, G.P., Raithby, P.R., Allen, F.H. and Motherwell, W.S. (2000) The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Crystallographica, B56, 455465.Google Scholar
Supplementary material: File

Kampf et al. supplementary material 1

Kampf et al. supplementary material
Download Kampf et al. supplementary material 1(File)
File 123.2 KB
Supplementary material: File

Kampf et al. supplementary material 2

Kampf et al. supplementary material
Download Kampf et al. supplementary material 2(File)
File 134.3 KB