Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T23:27:42.071Z Has data issue: false hasContentIssue false

A Mössbauer spectroscopic study of the cooling history of hypersthene from selected members of the Taupo Pumice formation, New Zealand

Published online by Cambridge University Press:  05 July 2018

J. H. Johnston
Affiliation:
Chemistry Department, Victoria University of Wellington, Private BagWellingtonNew Zealand
K. E. Knedler
Affiliation:
Chemistry Department, Victoria University of Wellington, Private BagWellingtonNew Zealand

Summary

57Fe Mössbauer spectroscopy has been used to determine the Mg2+-Fe2+ distribution between the two crystallographically inequivalent cation sites in hypersthenes from a stratigraphic tephra sequence of the Taupo Pumice formation, North Island, New Zealand. From these distributions and X-ray fluorescence analytical data, cooling histories were constructed using previously determined Mg2+-Fe2+ equilibrium isotherms for orthopyroxenes. The results showed that this cooling history geothermometer could be used to enable airfall and airflow tephra to be distinguished. In addition, they showed that the cooling rate of the above deposits correlated better with the deposit thickness, than with the distance of the deposit from the source.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bancroft, (G. M.), 1973. Miössbauer spectroscopy: an introduction for inorganic chemists and geochemists. McGraw Hill, London.Google Scholar
Bancroft, (G. M.) Maddock, (A. G.), and Burns, (R. G.), 1967. Geochim. Cosmochim. Acta. 31, 2219.CrossRefGoogle Scholar
Baumgart, (I. L.) and Healy, (J.), 1956. Proc. 7th Pacific Sci. Congr. 2, 113.Google Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1970. Introduction to the rock forming minerals. Longmans, London.Google Scholar
Dollase, (W. A.), 1975. Am. Mineral. 60, 257.Google Scholar
Ewart, (A.), 1963. J. Petrol. 4, 392.CrossRefGoogle Scholar
Ghose, (S.), 1965. Z. KristaUogr: 122, 81.CrossRefGoogle Scholar
Ghose, (S.) and Hafner, (S.), 1967. Ibid. 125, 157.Google Scholar
Grant-Taylor, (T. L.) and Rafter, (T. A.), 1971. New Zealand J. Geol. Geophys. 14, 364.CrossRefGoogle Scholar
Hafner, (S. S.) and Virgo, (D.), 1969. Science, 165, 285.CrossRefGoogle Scholar
Hafner, (S. S.) and Warburton, (D.), 1971. Proc. Second Lunar Sci. Conf. 1, 91.Google Scholar
Healy, (J.), 1964. New Zealand Geol. Surv. Bull. 73, 88 pp.Google Scholar
Johnston, (J. H.), 1977. Geochim. Cosmochim. Acta, 41, 539.CrossRefGoogle Scholar
Johnston, (J. H.) and Nixon, (J. E. A.), 1971. New Zealand J. Sci. 14, 1107.Google Scholar
Norrish, (K.), and Hutton, (J. T.), 1969. Geochim. Cosmochim. Acta, 33, 431.CrossRefGoogle Scholar
Poole, (R. W.), 1974. Unpubl. B.Sc. (Honours) Project, Geology Department, Victoria University of Wellington.Google Scholar
Saxena, (S. K.), 1973. Thermodynamics of rock-forming crystalline solutions, 91. Springer-Verlag, New York.CrossRefGoogle Scholar
Saxena, (S. K.) and Ghose, (S.), 1971. Am. Mineral. 56, 523.Google Scholar
Stone, (A. J.), 1967. J. Chem. Soc. A, Appendix p. 1971.Google Scholar
Virgo, (D.), and Hafner, (S. S.), 1968. Earth Planet Sci. Lett. 4, 265.CrossRefGoogle Scholar
Virgo, (D.) 1969. Mineral. Soc. Am. Pap. 2, 67.Google Scholar
Virgo, (D.) 1970. Am. Mineral. 55, 201.Google Scholar