Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-05-05T14:23:46.425Z Has data issue: false hasContentIssue false

Mineralogy and genetic considerations of the metamorphosed As-rich manganese ore mineralisation at the Diely occurrence near Poráč, Northern Gemeric Unit, Western Carpathians, Slovakia

Published online by Cambridge University Press:  12 November 2024

Pavol Myšľan*
Affiliation:
Earth Science Institute v.v.i., Slovak Academy of Sciences, Dúbravská cesta 9, P.O. 106, 840 05, Bratislava, Slovakia Department of Mineralogy, Petrology and Economic Geology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15, Bratislava, Slovakia
Martin Števko
Affiliation:
Earth Science Institute v.v.i., Slovak Academy of Sciences, Dúbravská cesta 9, P.O. 106, 840 05, Bratislava, Slovakia Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 - Horní Počernice, Czech Republic
Tomáš Mikuš
Affiliation:
Earth Science Institute v.v.i., Slovak Academy of Sciences, Ďumbierska 1, 974 11, Banská Bystrica, Slovakia
Luboš Vrtiška
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 - Horní Počernice, Czech Republic
*
Corresponding author: Pavol Myšľan; Email: [email protected]

Abstract

The Diely occurrence of metamorphosed As-rich manganese mineralisation is located in the Spišsko-gemerské rudohorie Mountains near the Poráč village and comprises Early Palaeozoic metamorphic rocks of the Gemeric Unit in the Western Carpathian region. Mineralisation is situated in the narrow tectonically delineated belt of Rakovec Group rocks consisting of mafic metavolcanic material generated during the back-arc submarine volcanic activity of the Early Ordovician–Silurian period. The Mn mineralisation is hosted in siliceous laminated lenses (metacherts) embedded in metabasalts and its tuffs. Manganese ore consists of quartz, braunite, rhodonite, nambulite, rhodochrosite, kutnohorite, OH-bearing garnets with dominant andradite composition, hematite, aegirine, aegirine–augite, ferri-ghoseite, ferri-winchite, baryte and pyrophanite. The mineralisation is cross-cut by a system of narrow younger veins composed dominantly of As-enriched minerals of the pyrosmalite group (schallerite, mcgillite and friedelite), tiragalloite, manganberzeliite, brandtite, sarkinite and svabite, associated with hematite, rhodochrosite, kutnohorite, baryte and quartz. Formation of manganese mineralisation at the Diely occurrence was caused by migration of seawater into the basaltic oceanic crust where increasing temperatures and acidity generated hydrothermal fluids enriched in manganese. The Mn-bearing hydrothermal fluids were enriched in Li, providing an additional substituent in the mineralisation. Following initial stages, the subsequent Variscan and Alpine tectonometamorphic events resulted in formation of three main mineralisation stages distinguishable by paragenetic relations and the mineral composition. Based on metamorphic association and amphibole geobarometric calculations, the peak metamorphic conditions reached was upper greenschist facies. The Diely occurrence near Poráč represents a unique metamorphosed manganese mineralisation with abundant arsenates and arsenosilicates previously unknown in the Western Carpathian region.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: Craig Storey

References

Abs-Wurmbach, I. and Peters, T. (1999) The Mn–Al–Si–O system: an experimental study of phase relations applied to paragenesis in manganese-rich ores and rocks. European Journal of Mineralogy, 11, 4568.CrossRefGoogle Scholar
Albrecht, J. (1989) Manganiferous phyllosilicate assemblages: occurrences, composition and phase relations in metamorphosed Mn deposits. Contributions to Mineralogy and Petrology, 103, 228241.CrossRefGoogle Scholar
Albrecht, J. (1990) An As-rich manganiferous mineral assemblage from the Ködnitz Valley (Eastern Alps, Austria): geology, mineralogy, genetic considerations, and implications for metamorphic Mn deposits. Neues Jahrbuch für Mineralogie, Monatshefte, 8, .Google Scholar
Bajaník, Š., Ivanička, J., Mello, J., Pristaš, J., Reichwalder, P., Snopko, L., Vozár, J., and Vozárová, (1983) Geological map of the Slovenské Rudohorie Mts. – eastern part 1: 50.000. Dionýz Štúr Institute of Geology, Bratislava [in Slovak].Google Scholar
Bajaník, Š., Vozárová, A. and Reichwalder, P. (1981) Lithostratigraphic classification of Rakovec Group and Late Paleozoic sediments in the Spišsko-gemerské rudohorie Mts. Geologické Práce, Správy, 75, 2756 [in Slovak].Google Scholar
Barresi, A.A., Kolitsch, U., Ciriotti, M.E., Ambrino, P., Bracco, R. and Bonacina, E. (2005) Manganese minerals of the Varenche (Aosta, north-western Italy): ardennite, arseniopleite, manganberzeliite, pyrophanite, sarkinite, sursassite, thortveitite, new As- analogue of metavariscite and other mineral species. Micro, 2, 81122 [in Italian].Google Scholar
Bersani, D., Andò, S., Vignola, P., Moltifiori, G., Marino, I-G., Lottici, P.P. and Diella, V. (2009) Micro-Raman spectroscopy as a routine tool for garnet analysis. Spectrochimica Acta Part A, 73, 484491.CrossRefGoogle ScholarPubMed
Biagioni, C., Bosi, F., Hålenius, U. and Pasero, M. (2016) The crystal structure of svabite, Ca5(AsO4)3F, an arsenate member of the apatite supergroup. American Mineralogist, 101, 17501755.CrossRefGoogle Scholar
Bowell, R.J. (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9, 279286.CrossRefGoogle Scholar
Brown, E.H. (1977) The crossite content of Ca-amphiboles as a guide to pressure of metamorphism. Journal of Petrology, 18, 5372.CrossRefGoogle Scholar
Brugger, J. and Gieré, R. (2000) Origin and distribution of some trace elements in metamorphosed Fe-Mn deposits, Val Ferrera, eastern Swiss Alps. The Canadian Mineralogist, 38, 10751101.CrossRefGoogle Scholar
Brugger, J. and Meisser, N. (2006) Manganese-rich assemblages in the Barrhorn unit, Turtmanntal, central Alps, Switzerland. The Canadian Mineralogist, 44, 229248.CrossRefGoogle Scholar
Brusnitsyn, A.I. (2007) Associations of Mn-bearing minerals as indicators of oxygen fugacity during the metamorphism of metalliferous deposits. Geochemistry International, 45, 345363.CrossRefGoogle Scholar
Brusnitsyn, A.I., Starikova, E.V. and Zhukov, I.G. (2017) Mineralogy of low grade metamorphosed manganese sediments of the Urals: Petrological and geological applications. Ore Geology Reviews, 85, 140152.CrossRefGoogle Scholar
Cabella, R., Lucchetti, G. and Marescotti, P. (1999) Occurrence of LREE- and Y-arsenates from a Fe-Mn deposit, Ligurian Briançonnais Domain, Maritime Alps, Italy. The Canadian Mineralogist, 37, 961972.Google Scholar
Castellaro, F., Passarino, G., Kampf, A.R. and Esposito, M. (2021) Recent mineralogical research in the Cassagna Section of the manganese mines of Val Graveglia, Genova - News and confirmations of systematic mineralogy. Micro, 19, 3460 [in Italian].Google Scholar
Crerar, D.A., Namson, J., Chyi, M., Williams, L. and Feigenson, M.D. (1982) Manganiferous cherts of the Franciscan assemblage: I. General geology, ancient and modern analogues, and implications for hydrothermal convection at oceanic spreading centers. Economic Geology, 77, 519540.CrossRefGoogle Scholar
Donnay, G., Bétournay, M. and Hamill, G. (1980) McGillite, a new manganous hydroxychlorosilicate. The Canadian Mineralogist, 18, 3136.Google Scholar
Dunn, P.J. (1995). Franklin and Sterling Hill, New Jersey: The World´s Most Magnificient Minerals Deposits Franklin, USA: Franklin-Ogdensburg Mineralogical Society, p.Google Scholar
Dunn, P.J. and Peacor, D.R. (1983) Kittatinnyite and wallkilldellite, silicate/arsenate analogues containing calcium and manganese, from Franklin and Sterling Hill, New Jersey. American Mineralogist, 68, 1021032.Google Scholar
Dunn, P.J., Peacor, D.R., Nelen, J.A. and Norberg, J.A. (1981) Crystal-chemical data for schallerite, caryopilite and friedelite from Franklin and Sterling Hill, New Jersey. American Mineralogist, 66, 10541062.Google Scholar
Faryad, S.W. (1994) Mineralogy of Mn-rich rocks from greenschist facies sequences of the Gemericum, West Carpathians, Slovakia. Neues Jahrbuch für Mineralogie, Monatshefte, 10, 464480.CrossRefGoogle Scholar
Faryad, S.W. and Bernhardt, H. (1996) Taramite-bearing metabasites from Rakovec (Gemeric Unit, The Western Carpathians). Geologica Carpathica, 47, 349357.Google Scholar
Faryad, S.W., Ivan, P. and Jedlicka, R. (2020) Pre-Alpine high-pressure metamorphism in the Gemer unit: mineral textures and their geodynamic implications for Variscan Orogeny in the Western Carpathians. International Journal of Earth Sciences, 109, 15471564.CrossRefGoogle Scholar
Fujinaga, K., Nozaki, T., Nishiuchi, T., Kuwahara, K., and Kato, Y. (2006) Geochemistry and origin of Ananai Stratiform Manganese Deposit in the Northern Chichibu Belt, Central Shikoku, Japan. Resource Geology, 56, 399414.CrossRefGoogle Scholar
Geiger, C.A., and Rossman, G.R. (2020) Micro- and nano-size hydrogarnet clusters and proton ordering in calcium silicate garnet: Part I. The quest to understand the nature of “water” in garnet continues. American Mineralogist, 105, 455467.CrossRefGoogle Scholar
Gramaccioli, C.M., Griffin, W.L. and Mottana, A. (1980) Tiragalloite, Mn4[AsSi3O12(OH)], new mineral and the first example of arsenatotrisilicate. American Mineralogist, 65, 947952.Google Scholar
Grecula, P., Abonyi, A., Abonyiová, M., Antaš, J., Bartalský, B., Bartalský, J., Dianiška, I., Ďuďa, R., Gargulák, M., Gazdačko, Ľ., Hudáček, J., Kobulský, J., Lörincz, L., Macko, J., Návesňák, D., Németh, Z., Novotný, L., Radvanec, M., Rojkovič, I., Rozložník, L., Varček, C. and Zlocha, Z. (1995) Mineral deposits of the Slovak Ore Mountains, Vol 1. Geocomplex, Bratislava, p. [in Slovak].Google Scholar
Hålenius, U., and Westlund, E. (1998) Manganese valency and the colour of the Mn2AsO4(OH) polymorphs eveite and sarkinite. Mineralogical Magazine, 62, 113119.CrossRefGoogle Scholar
Hein, J.R., Koschinsky, A., Halbach, P. et al. (1997) Iron and manganese oxide mineralization in the Pacific. In: Nicholson, K., Hein, J. R., Buhn, B., et al., eds., Manganese Mineralization: Geochemistry and Mineralogy of Terrestrial and Marine Deposits. Geological Society Special Publication, 123138.Google Scholar
Hîrtopanu, P. (1997) Tolovanu manganese mine. In: Nedelcu L., Moga C., Podasca I. and Hirtopanu P. (editors.), Crystalline zone of the East Carpathians (Northern Bistrița Mts.): Structure, lithostratigraphy, metamorphism and metallogenyValea Putnei-Valea Bistriței. Romanian Journal of Mineralogy, 78, 2534.Google Scholar
Hîrtopanu, P. and Udubaşa, G. (2015) Minerals from Răzoare Mn-Fe deposit, Preluca Mountains, East Carpathians, Romania: New data. Romanian Journal of Mineral Deposits, 88, 1128.Google Scholar
Hofmann, B. and Knill, M.D. (1996) New conclusions on the genesis of the mineral deposit Lengenbach in the Binn Valley (VS). Schweizer Strahler, 11 (XXXI), 6877 [in German].Google Scholar
Holtstam, D. and Langhof, J. (editors) (1999) Långban: The mines, their minerals, geology and explorers. Raster Förlag; Swedish Museum of Natural History, Stockholm, p.Google Scholar
Hovorka, D., Ivan, P., Jilemnická, L. and Spišiak, J. (1988) Petrology and geochemistry of metabasalts from Rakovec (Paleozoic of Gemeric Unit, Inner Western Carpathians). Geologický Zborník - Geologica Carpathica, 39, .Google Scholar
Ito, J. (1972) Synthesis and crystal chemistry of Li-hydro-pyroxenoids. Mineralogical Journal, 7, 4565.CrossRefGoogle Scholar
Ivan, P. (2009) Early Palaeozoic basic volcanism of the Western Carpathians: geochemistry and geodynamic position. Acta Geologica Universitatis Comenianae, Comenius University, Bratislava, p. [in Slovak].Google Scholar
Jonsson, E. and Hålenius, U. (2010) Mn3+-bearing pargasite from the Långban Fe-Mn oxide mineralisation, Bergslagen, Sweden. GFF, 132, 167172.CrossRefGoogle Scholar
Kampf, A.R. (2009) Miguelromeroite, the Mn analogue of sainfeldite, and redefinition of villyaellenite as an ordered intermediate in the sainfeldite-miguelromeroite series. American Mineralogist, 94, 15351540.CrossRefGoogle Scholar
Kantor, J. (1953a) Manganese deposit on Heckerová (Bytrý potok) west of Smolník. ŠGÚDŠ, Bratislava [in Slovak].Google Scholar
Kantor, J. (1953b) Manganese deposit near Čučma. ŠGÚDŠ, Bratislava, 32 p. [in Slovak].Google Scholar
Khan, M.A., Kakar, M.I., Ulrich, T., Ali, L., Kerr, A.C., Mahmood, K. and Siddiqui, R.H. (2020) Genesis of manganese deposits in the Ali Khanzai Block of the Zhob Ophiolite, Pakistan: Inferences from geochemistry and mineralogy. Journal of Earth Science, 31, 884895.CrossRefGoogle Scholar
Kolesov, B.A., and Geiger, C.A. (2005) The vibrational spectrum of synthetic hydrogrossular (katoite) Ca3Al2(O4H4)3: a low-temperature IR and Raman spectroscopic study. American Mineralogist, 90, 13351341.CrossRefGoogle Scholar
Kolitsch, U., Holtstam, D., and Gatedal, K. (2004) Crystal chemistry of REEXO4 compounds (X = P, As, V). I. Paragenesis and crystal structure of phosphatian gasparite-(Ce) from the Kesebol Mn-Fe-Cu deposit, Västra Götaland, Sweden. European Journal of Mineralogy, 16, 111116.CrossRefGoogle Scholar
Kolitsch, U., Schachinger, T. and Auer, C. (2017) Arseniosiderite(?), baryte, brandtite, manganberzeliite, rhodochrosite, sarkinite and todorokite from Mislkopf (Mieslkopf) near Matrei am Brenner, North Tyrol. Pp. 236–238 in Walter F. et al. (2017) New mineral discoveries from Austria LXVI. Carinthia II, 207/127, 217284 [in German].Google Scholar
Kolitsch, U., Schachinger, T. and Auer, C. (2018) Aegirine, aegirine-augite, albite, baddeleyite, baryte, brandtite(?), braunite, calcite, canosioite, clinosuenoite (formerly “manganocummingtonite”), celestine, diaspore, dolomite, fluorapatite (containing As), fluorcalcioroméite, gamagarite, hematite, hausmannite, hjalmarite, hollandite, hydroxycalcioroméite, clinochlore, kutnohorite, mixed crystals manganiandrosite-(La)–manganiakasakaite-(La), nambulite, phlogopite, piemontite, pyrobelonite, Sb-containing pyrophanite, quartz, ranciéite(?), rhodochrosite, rhodonite, richterite, rutile, talc, thorite, tremolite, tilasite, titanite, tokyoite, wakefieldite-(Ce), wakefieldite-(Y), zircon, the Sb- analogue of hydroxymanganopyrochlore and unnamed LaAsO4 from Obernberger Tribulaun, North Tyrol – the first report on mineralogically complex lens-shaped metamorphic manganese mineralisations. Pp. 206–213 in: Walter F. et al. (2018) New mineral discoveries from Austria LXVII. Carinthia II, 208/128, 185254 [in German].Google Scholar
Kolitsch, U., Schachinger, T. and Auer, C. (2019) Akatoreite(?), albite, ardennite-(As), ardennite- (V), „ardennite-(Si)“, baryte, brandtite(?) (or unnamed Ca2Mn(AsO4)2?), celestine, fluorapatite, fluorcalcioroméite, frankdicksonite(?), friedelite, ganophyllite(?), hematite, hausmannite, hollandite, jacobsite, clinochlore, kutnohorite, manganberzeliite, manganiandrosite-(La)-manganiakasakaite-(La) mixed crystals, muscovite, opal(?), pennantite, piemontite(?), pyrobelonite, pyrophanite, quartz, rhodochrosite, rhodonite, sarkinite, schallerite, spessartine, svabite, tephroite, tilasite and tiragalloite from Navisbach, Navistal, North Tyrol. Pp. 251–260 in: Walter F. et al. (2019) New mineral discoveries from Austria LXVIII. Carinthia II, 209/129, 237362 [in German].Google Scholar
Kolitsch, U., Schachinger, T. and Auer, C. (2021) Further mineralogical investigations on the metamorphic Jurassic manganese occurrences in the Fuchsalm area in the Hochfeindgruppe, Radstädter Tauern, Salzburg: Evidence of arseniopleite, arsenmedaite, celsiane, coombsite, fluorcalcioroméite, gasparite-(Ce), gasparite-(La), Nd-dominant gasparite, hedyphane, hejtmanite, hydroxycalcioroméite, conichalcite, magnesio- arfvedsonite, mimetesite and its unnamed OH-analogue, pyrobelonite, sarkinite, suzukiite/bavsiite, tilasite, tiragalloite, the unnamed epidote-group member CaSr(Fe3+AlMn3+)(Si2O7)(SiO4)O(OH) and other minerals. Pp. 225–246 in: Walter F. et al. (2021) New mineral discoveries from Austria LXX. Carinthia II, 211/131, 187276 [in German].Google Scholar
Kolitsch, U., Schachinger, T. and Auer, C. (2023) Manganberzeliite from the Fuchsalm near Tweng, Salzburg. Pp. 271–272 in: Walter F. et al (2023) New mineral discoveries from Austria LXXII. Carinthia II, 213/133, 237330 [in German].Google Scholar
Laurinc, D. and Vozárová, A. (2011) Mineral composition of the Northern Gemericum Late Paleozoic metasandstones as an indicator of the source area. Mineralia Slovaca, 43, 313326 [in Slovak].Google Scholar
Mahar, E.M., Baker, J.M., Powell, R., Holland, T.J.B. and Howell, N. (1997) The effect of Mn on mineral stability in metapelites. Journal of Metamorphic Geology, 15, 223238.CrossRefGoogle Scholar
Marchesini, M., Foianini, I., Foianini, S. and Appiani, R. (2022) Tiragalloite: retrospective forty years after the first description and report of an exceptional find at the Vedretta di Scerscen, Valmalenco, Sondrio. Micro, 20, 127 [in Italian].Google Scholar
Matsubara, S. (1975) Manganberzeliite from the Gozaisho mine, Fukushima Prefecture, Japan. Journal of the Mineralogical Society of Japan, 12, 238252 [in Japanese].CrossRefGoogle Scholar
Matsubara, S., Kato, A. and Tiba, T. (1985) Natronambulite, (Na,Li)(Mn,Ca)4Si5O14OH, a new mineral from the Tanohata mine, Iwate Prefecture, Japan. Mineralogical Journal, 12, 332340.CrossRefGoogle Scholar
Matsubara, S., Miyawaki, R., Kato, A., Matsuyama, F., Mouri, T. and Suzuki, Y. (2001) Arseniopleite from Gozaisho mine, Fukushima Prefecture, Japan. Bulletin of the National Science Museum, Series C, 27, 5162.Google Scholar
Mottana, A. (1986) Blueschist-facies metamorphism of manganiferous chert: A review of the alpine occurrences. Geological Society of America Memoirs, 164, 267299.CrossRefGoogle Scholar
Mukhopadhyay, S., Das, K. and Fukuoka, M. (2005) Nambulite, (Li,Na)Mn4Si5O14(OH), in the Sausar Group of rocks in Central India. Journal of Mineralogical and Petrological Sciences, 100, 2630.CrossRefGoogle Scholar
Myšľan, P., Števko, M. and Mikuš, T. (2023) Mineralogy and genetic aspects of the metamorphosed manganese mineralization at the Július ore occurrence near Betliar (Gemeric Unit, Western Carpathians, Slovakia). Journal of Geosciences, 68, 313332.Google Scholar
Nagashima, M. and Armbruster, T. (2010) Ardennite, tiragalloite and medaite: structural control of (As5+,V5+,Si4+)O4 tetrahedra in silicates. Mineralogical Magazine, 74, 5571.CrossRefGoogle Scholar
Nagashima, M. and Armbruster, T. (2012) Palenzonaite, berzeliite, and manganberzeliite: (As5+,V5+,Si4+)O4 tetrahedra in garnet structures. Mineralogical Magazine, 76, .CrossRefGoogle Scholar
Nagashima, M., Armbruster, T., Kolitsch, U. and Pettke, T. (2014) The relation between Li ↔ Na substitution and hydrogen bonding in five-periodic single-chain silicates nambulite and marsturite: A single-crystal X-ray study. American Mineralogist, 99, 14621470.CrossRefGoogle Scholar
Onuki, H., Akasaka, M., Yoshida, T. and Nedachi, M. (1982) Ti-rich hydroandradites from the Sanbagawa Metamorphic Rocks of the Shibukawa Area, Central Japan. Contributions to Mineralogy and Petrology, 80, 183188.CrossRefGoogle Scholar
Ozawa, T., Takéuchi, Y. and Tahakara, T. (1983) The pyrosmalite group of minerals. II. The layer structure of mcgillite and friedelite. The Canadian Mineralogist, 21, 717.Google Scholar
Peacor, D.R., Dunn, P.J., Simmons, W.B. and Wicks, F.J. (1986) Arsenites related to layer silicates: Manganarsite, the arsenite analogue of manganpyrosmalite, and unnamed analogues of friedelite and schallerite from Långban, Sweden. American Mineralogist, 71, 15171521.Google Scholar
Peterec, D. and Ďuďa, R. (2003) Rare minerals of Mn deposit near Čučma. Natura Carpathica, 44, 229236 [in Slovak].Google Scholar
Putiš, M., Sergeev, S., Ondrejka, M., Larionov, A., Siman, P., Spišiak, J., Uher, P. and Paderin, I. (2008) Cambrian–Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geologica Carpathica, 59, 318.Google Scholar
Radvanec, M. and Gonda, S. (2020) Successive formation of Fe and Mn skarns in the Čučma locality (Gemeric unit, W. Carpathians): from metasomatic stage through the amphibolite facies overprint with Ti-rich tephroite to retrograde stilpnomelane-chlorite zone. Mineralia Slovaca, 52, 103132.Google Scholar
Rojkovič, I. (2001) Early Paleozoic manganese ores in the Gemericum Superunit, Western Carpathians, Slovakia. Geolines, 13, 3441.Google Scholar
Roy, S. (1992) Environments and processes of manganese deposition. Economic Geology, 87, 12181236.CrossRefGoogle Scholar
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. and Ustaszewski, K. (2008) The Alpine–Carpathians–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139183.CrossRefGoogle Scholar
Schneider, G.I.C. (1987) On the mineralogy of nambulite, a rare manganese silicate from Namibia, Japan and Brazil. Communications of the Geological Survey of South West Africa/Namibia, 3, 3740.Google Scholar
Shchipalkina, N.V., Pekov, I.V., Chukanov, N.V., Biagioni, C. and Pasero, M. (2019) Crystal chemistry and nomenclature of rhodonite-group minerals. Mineralogical Magazine, 83, 829835.CrossRefGoogle Scholar
Spišiak, J. and Hovorka, D. (2000) Piemontite and spessartine in Lower Paleozoic metasediments of the Inner Western Carpathians. Acta mineralogica-petrographica, 41, .Google Scholar
Spišiak, J., Hovorka, D., Rybka, R. and Turan, J. (1989) Spessartine and piemontite in Lower Paleozoic metasediments of the Inner West Carpathians. Časopis pro Mineralogii a Geologii, 34, 1730 [in Slovak with English summary].Google Scholar
Števko, M., Myšľan, P., Biagioni, C., Mauro, D. and Mikuš, T. (2023) Ferriandrosite-(Ce), a new member of the epidote supergroup from Betliar, Slovakia. Mineralogical Magazine, 87, 887895.CrossRefGoogle Scholar
Števko, M., Plecháček, J., Venclík, V. and Malíková, R. (2015) Hausmannite and manganosite from the Čučma-Čierna baňa manganese deposit (Slovak Republic). Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 23, 3942.Google Scholar
Vaughan, J.P. (1986) The iron end-member of the pyrosmalite series from the Pegmont lead- zinc deposit, Queensland. Mineralogical Magazine, 50, 527531.CrossRefGoogle Scholar
Velilla, N. and Jiménez-Millán, J. (2012) Nambulite bearing rock from the Ossa-Morena Central Belt (Iberian Massif, SW Spain). European Mineralogical Conference, 1, EMC2012385.Google Scholar
Vereshchagin, O.S., Britvin, S.N., Perova, E.N., Brusnitsyn, A.I., Polekhovsky, Y.S., Shilovskikh, V.V., Bocharov, V.N., van der Burgt, A., Cuchet, S., and Meisser, N. (2019) Gasparite-(La), La(AsO4), a new mineral from Mn ores of the Ushkatyn-III deposit, Central Kazakhstan, and metamorphic rocks of the Wanni glacier, Switzerland. American Mineralogist, 104, 14691480.CrossRefGoogle Scholar
Vozárová, A., Laurinc, D., Šarinová, K., Larionov, A., Presnyakov, S., Rodionov, N. and Paderin, I. (2013) Pb Ages of detrital zircons in relation to geodynamic evolution: Paleozoic of the northern Gemericum (Western Carpathians, Slovakia). Journal of Sedimentary Research, 83, 915927.CrossRefGoogle Scholar
Vozárová, A., Nemec, O., Šarinová, K., Anczkiewicz, R. and Vozár, J. (2021) Carboniferous mafic metavolcanic rocks in the Northern Gemeric Unit: Petrogenesis geochemistry, isotope composition and tectonic implication. Geologica Carpathica, 72, 114133.Google Scholar
Warr, L.N. (2021) IMA-CNMNC approved mineral symbols. Mineralogical Magazine, 85, 291320.CrossRefGoogle Scholar
White, R.W., Powell, R. and Johnson, T.E. (2014) The effect of Mn on mineral stability in metapelites revisited: new a-x relations for manganese-bearing minerals. Journal of Metamorphic Geology, 32, 809828.CrossRefGoogle Scholar
Supplementary material: File

Myšľan et al. supplementary material

Myšľan et al. supplementary material
Download Myšľan et al. supplementary material(File)
File 203 KB