Hostname: page-component-55f67697df-xlmdk Total loading time: 0 Render date: 2025-05-09T17:20:24.285Z Has data issue: false hasContentIssue false

Manuelarossiite, CaPbAlF7, a new fluoride from the Vesuvius volcano, Italy

Published online by Cambridge University Press:  11 November 2024

Fabrizio Nestola*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Cristian Biagioni
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, Italy
Vladislav V. Gurzhiy
Affiliation:
Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, 199034 Saint-Petersburg, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Lisa Santello
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
*
Corresponding author: Fabrizio Nestola; Email: [email protected]Associate Editor: Elena Zhitova

Abstract

Manuelarossiite, ideally CaPbAlF7, is a new fluoride mineral found in a specimen from a fumarole formed subsequent to the 1944 eruption of the Vesuvius volcano, Naples Province, Campania, Italy. It occurs as very rare tabular crystals, up to 0.06 × 0.04 × 0.015 mm, in the vugs of volcanic scoria, associated with cerussite. In the same scoria where manuelarossiite was found, anglesite, artroeite, atacamite, calcioaravaipaite, cerussite, challacolloite, cotunnite, hephaistosite, matlockite, napoliite and susannite were identified. Manuelarossiite is colourless with a white streak and adamantine lustre. It is brittle and has a laminated fracture. Cleavage is perfect on {001}. Dcalc = 5.095 g cm–3. The calculated mean refractive index is 1.625. The chemical composition (wt.%, electron microprobe, H2O calculated by stoichiometry) is: CaO 13.98, PbO 55.46, Al2O3 12.59, F 29.45, H2O 1.68, –O=F –12.40, total 100.76. The empirical formula calculated on the basis of 7 anions is Ca1.00Pb1.00Al1.00[F6.25(OH)0.75]Σ7.00. Raman spectroscopy confirms the limited presence of OH groups in the mineral. Manuelarossiite is monoclinic, space group C2/m, with a = 7.6754(3), b = 7.4443(4), c = 9.2870(5) Å, β = 93.928(5)°, V = 529.39(5) Å3 and Z = 4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.257 (57) (001); 4.537 (72) (111); 3.725 (98) (020); 3.630 (57) (20$\bar 1$); 3.588 (65) (11$\bar 2$); 3.460 (100) (021); 3.422 (63) (112); and 2.673 (65) (220). The crystal structure was refined to R1 = 0.056 for 849 reflections with F > 4σ(F). It is characterised by {001} layers formed by CaF8 polyhedra decorated on both sides by AlF6 octahedra, in turn connected to the {001} layer through edge-sharing. Successive {001} layers are bonded through Pb atoms. The new mineral honours Dr. Manuela Rossi (b. 1977) from the University of Naples for her contribution to the study of the Vesuvius volcano and its minerals.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 146, 104107 [in Russian].Google Scholar
Campostrini, I. and Gramaccioli, C. (2005) Artroeite del Monte Somma-Vesuvio: secondo ritrovamento mondiale. Rivista Mineralogica Italiana, 29, 5052 [in Italian].Google Scholar
Campostrini, I., Demartin, F. and Russo, M. (2019) Sbacchiite, Ca2AlF7, a new fumarolic mineral from the Vesuvius volcano, Napoli, Italy. European Journal of Mineralogy, 31, 153158.CrossRefGoogle Scholar
Demartin, F., Campostrini, I., Castellano, C. and Russo, M. (2014) Parascandolaite, KMgF3, a new perovskite-type fluoride from Vesuvius. Physics and Chemistry of Minerals, 41, 403407.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Kampf, A.R. (2001) The crystal structure of aravaipaite. American Mineralogist, 86, 927931.CrossRefGoogle Scholar
Kampf, A.R. and Foord, E.E. (1995) Artroeite, PbAlF3(OH)2, a new mineral from the Grand Reef mine, Graham County, Arizona: Description and crystal structure. American Mineralogist, 80, 179183.CrossRefGoogle Scholar
Kampf, A.R. and Foord, E.E. (1996) Calcioaravaipaite, a new mineral, and associated lead fluoride minerals from the Grand Reef mine, Graham County, Arizona. Mineralogical Record, 27, 293300.Google Scholar
Kampf, A.R., Dunn, P.J. and Foord, E.E. (1989) Grandreefite, pseudograndreefite, laurelite, and aravaipaite: four new minerals from the Grand Reef mine, Graham County, Arizona. American Mineralogist, 74, 927933.Google Scholar
Kampf, A.R., Merlino, S. and Pasero, M. (2003) Order-disorder approach to calcioaravaipaite, [PbCa2Al(F,OH)9]: The crystal structure of the triclinic MDO polytype. American Mineralogist, 88, 430435.CrossRefGoogle Scholar
Kampf, A.R., Yang, H., Downs, R.T. and Pinch, W.H. (2011) The crystal structures and Raman spectra of aravaipaite and calcioaravaipaite. American Mineralogist, 96, 402407.CrossRefGoogle Scholar
Kasatkin, A.V., Siidra, O.I., Nestola, F., Pekov, I.V., Agakhanov, A.A., Koshlyakova, N.N., Chukanov, N.V., Nazarchuk, E.V., Molinari, S. and Rossi, M. (2023) Napoliite, Pb2OFCl, a new mineral from Vesuvius volcano, and its relationship with dimorphous rumseyite. Mineralogical Magazine, 87, 711718.CrossRefGoogle Scholar
Malcherek, T., Bindi, L., Dini, M., Ghiara, M.R., Molina Donoso, A., Nestola, F., Rossi, M. and Schluter, J. (2014) Tondiite, Cu3Mg(OH)6Cl2, the Mg-analogue of herbertsmithite. Mineralogical Magazine, 78, 583590.CrossRefGoogle Scholar
Merlet, C. (1994). An accurate computer correction program for quantitative electron probe microanalysis. Microchimica acta, 114, 363376.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Nestola, F., Kasatkin, A.V., Biagioni, C., Škoda, R., Santello, L. and Agakhanov, A.A. (2023) Manuelarossiite, IMA 2022-097. CNMNC Newsletter 71. Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.11Google Scholar
Pekov, I.V., Zubkova, N.V., Zolotarev, A.A., Yapaskurt, V.O., Krivovichev, S.V., Belakovskiy, D.I., Lykova, I., Vigasina, M.F., Kasatkin, A.V., Sidorov, E.G. and Pushcharovsky, D.Yu. (2021) Dioskouriite, CaCu4Cl6(OH)4·4H2O: A new mineral description, crystal chemistry and polytypism. Minerals, 11, .CrossRefGoogle Scholar
Pekov, I.V. and Pushcharovsky, D.Y. (2023) The discovery of new minerals in modern mineralogy: experience, implications and perspectives. In: Bindi, L.; Cruciani, G. (eds) Celebrating the International Year of Mineralogy. Springer Mineralogy. Springer, Cham, 6999.CrossRefGoogle Scholar
Rossi, M. (2010) The fluorapatites in volcanic products of Somma-Vesuvius volcanic complex: crystallographic parameters, crystal-chemistry and minerogenetic implications. Plinius, 36, 212221.Google Scholar
Rossi, M., Ghiara, M.R., Chita, G. and Capitelli, F. (2011) Crystal-chemical and structural characterization of fluorapatites in ejecta from Somma-Vesuvius volcanic complex. American Mineralogist, 96, 18281837.CrossRefGoogle Scholar
Rossi, M., Nestola, F., Zorzi, F., Lanza, A., Peruzzo, L., Guastoni, A. and Kasatkin, A. (2014) Ghiaraite: A new mineral from Vesuvius volcano, Naples (Italy). American Mineralogist, 99, 519524.CrossRefGoogle Scholar
Rossi, M., Nestola, F., Ghiara, M.R. and Capitelli, F. (2016) Fibrous minerals from Somma-Vesuvio volcanic complex. Mineralogy and Petrology, 110, 471489.CrossRefGoogle Scholar
Russo, M. and Campostrini, I. (2011) Ammineite, matlockite and post 1944 eruption fumarolic minerals at Vesuvius. Plinius, 37, [in Italian].Google Scholar
Russo, M. and Campostrini, I. (2022) Elenco delle specie minerali del “Somma-Vesuvio”. Miscellanea INGV, 65, 133.Google Scholar
Russo, M., Campostrini, I. and Demartin, F. (2014) Fumarolic minerals after the 1944 Vesuvius eruption. Abstract in: The Future of the Italian Geosciences – The Italian Geosciences of the Future (Cesare, B., Erba, E., Carmina, B., Fascio, L., Petti, F.M. and Zuccari, A., editors). Abstract Book, 87° Congresso della Società Geologica Italiana e 90° Congresso della Società Italiana di Mineralogia e Petrologia, Milan, Italy, September 10–12, 2014. Rendiconti Online della Società Geologica Italiana, 31, Supplemento n. 1.Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
Supplementary material: File

Nestola et al. supplementary material 1

Nestola et al. supplementary material
Download Nestola et al. supplementary material 1(File)
File 92 KB
Supplementary material: File

Nestola et al. supplementary material 2

Nestola et al. supplementary material
Download Nestola et al. supplementary material 2(File)
File 244.6 KB