Hostname: page-component-5cf477f64f-54txb Total loading time: 0 Render date: 2025-04-01T17:46:52.602Z Has data issue: false hasContentIssue false

Hidden mineral treasures in rust samples of the Muonionalusta iron (IVA) meteorite

Published online by Cambridge University Press:  21 January 2025

Alice Taddei
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, Firenze, Italy
Dan Holtstam
Affiliation:
Department of Geosciences, Swedish Museum of Natural History, Box 50007, Stockholm, Sweden;
Luca Bindi*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, Firenze, Italy CNR – Istituto di Geoscienze e Georisorse, sezione di Firenze, via La Pira 4, Firenze, Italy
*
Corresponding author: Luca Bindi; Email: [email protected]

Abstract

Exceptionally well-developed crystals of akaganeite, (Fe3+,Ni2+)8(OH,O)16Cl1.25·nH2O, were observed during the investigation of rust samples from the Muonionalusta iron meteorite, constituting ideal candidates for the first single-crystal X-ray diffraction investigation carried out on this mineral. Other techniques here employed to study akaganeite include SEM-EDS and Raman spectroscopy.

The structure refinement (R1 = 2.23%) confirmed akaganeite to be monoclinic in symmetry (space group I2/m), with a = 10.560(4) Å, b = 3.0268(12) Å, c = 10.512(4) Å, β = 90.050(15)° and V = 336.0(2) Å3. The mineral is also confirmed to be isostructural with monoclinic members of the hollandite supergroup, with 2 × 2 tunnels parallel to the b axis constituted by edge-linked Fe-octahedral chains. Chemical analyses resulted in a Cl range of 2.8–5.6 wt.% and an average mole Fe/Cl ratio of 7.6, with trace amounts of Si, Al and S (< 0.1 wt.%), and no detectable Ni or Co. The combination of structural and chemical data yielded the stoichiometric formula Fe8O7(OH)9Cl. The Raman spectrum of the Muonionalusta akaganeite is comparable with Raman spectra from synthetic akaganeite, showing several peaks between 138 and 1390 cm–1 and the O–H stretching band at 3510 cm–1; no peaks are observed in the H2O bending-mode area of the spectrum, in keeping with the structural data. Taking into account all the collected data, we propose two possible new formulae for akaganeite (Z = 8): FeO1–x(OH)1+xClx (0.01 < x < 0.20) or, taking Ni into account, (Fe1–xNix)O1–x–y(OH)1+x+yCly (0 < x < 0.19 and 0.01 < y < 0.20).

In the Muonionalusta corrosion rust, in addition to akaganeite, nickel-bearing humboldtine [Fe(C2O4)·2H2O] was also identified through Raman spectroscopy, powder X-ray diffraction and chemical analyses. It possibly represents the first occurrence of an oxalate mineral as a product of terrestrial weathering of a meteorite.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Andersson, M., Carlsson, M., Ladenberger, A., Morris, G., Sadeghi, M. and Uhlbäck, J. (2014) Geochemical Atlas of Sweden. Geological Survey of Sweden, Uppsala, Sweden, 208 pp.Google Scholar
Biagioni, C., Capalbo, C. and Pasero, M. (2013) Nomenclature tunings in the hollandite supergroup. European Journal of Mineralogy, 25, 8590.Google Scholar
Bibi, I., Singh, B. and Silvester, E. (2011) Akaganéite (β-FeOOH) precipitation in inland acid sulfate soils of south-western New South Wales (NSW), Australia. Geochimica et Cosmochimica Acta, 75, 64296438.Google Scholar
Bland, P.A., Zolensky, M.E., Benedix, G.K. and Sephton, M.A. (2006) Weathering of chondritic meteorites. pp. 853867 in: Meteorites and the early solar system II (Lauretta, D.S. and McSween, H.Y., editors). University of Arizona Press, Tucson, USA.Google Scholar
Blichert-Toft, J., Moynier, F., Lee, C.T.A., Telouk, P. and Albarède, F. (2010) The early formation of the IVA iron meteorite parent body. Earth and Planetary Science Letters, 296, 469480.Google Scholar
Bruker (2016) APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Buchwald, V.F. (1975) Handbook of iron meteorites. Their history, distribution, composition and structure. University of California Press, Berkeley, USA, 1426 pp.Google Scholar
Buchwald, V.F. and Clarke, R.S. (1989) Corrosion of Fe-Ni alloys by Cl-containing akaganeite (β-FeOOH); the Antarctic meteorite case. American Mineralogist, 74, 656667.Google Scholar
Cai, J., Liu, J., Gao, Z., Navrotsky, A. and Suib, S.L. (2001) Synthesis and anion exchange of tunnel structure akaganeite. Chemistry of Materials, 13, 45954602.Google Scholar
de la Fuente, D., Díaz, I., Simancas, J., Chico, B. and Morcillo, M.J.C.S. (2011) Long-term atmospheric corrosion of mild steel. Corrosion Science, 53, 604617.Google Scholar
Echigo, T. and Kimata, M. (2008) Single-crystal X-ray diffraction and spectroscopic studies on humboldtine and lindbergite: weak Jahn–Teller effect of Fe2+ ion. Physics and Chemistry of Minerals, 35, 467475.Google Scholar
Echigo, T. and Kimata, M. (2010) Crystal chemistry and genesis of organic minerals: a review of oxalate and polycyclic aromatic hydrocarbon minerals. The Canadian Mineralogist, 48, 13291357.Google Scholar
Fagerlind, T. (1981) Glacial development in the Pajala district of northern Sweden. Sveriges geologiska undersökning BA 27, Uppsala, Sweden, 118 pp.Google Scholar
Fu, X., Jia, L., Wang, A., Cao, H., Ling, Z., Liu, C., Shi, E., Wu, Z., Li, B. and Zhang, J. (2020) Thermal stability of akaganeite and its desiccation process under conditions relevant to Mars. Icarus, 336, 113435.Google Scholar
Gadd, G. M., Bahri-Esfahani, J., Li, Q., Rhee, Y.J., Wei, Z., Fomina, M. and Liang, X. (2014) Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation. Fungal Biology Reviews, 28, 3655.Google Scholar
Giester, G., Rieck, B., Lengauer, C. L., Kolitsch, U. and Nasdala, L. (2023) Katsarosite Zn(C2O4)·2H2O, a new humboldtine-group mineral from the Lavrion Mining District, Greece. Mineralogy and Petrology, 117, 259267.Google Scholar
Gurdziel, A. (2012) Wietrzenie meteorytu Muonionalusta. Acta Societatis Metheoriticae Polonorum, 3, 3038 [in Polish].Google Scholar
Hättestrand, C. (2009) Sprängd dvärgplanet i nordsvensk myrmark. Forskning och framsteg, 3, 4651 [in Swedish].Google Scholar
Hidaka, Y., Shirai, N., Yamaguchi, A. and Ebihara, M. (2019) Siderophile element characteristics of acapulcoite–lodranites and winonaites: Implications for the early differentiation processes of their parent bodies. Meteoritics & Planetary Science, 54, 11531166.Google Scholar
Holtstam, D. (2006) Akaganéite as a corrosion product of natural, non-meteoritic iron from Qeqertarsuaq, West Greenland. GFF, 128, 6971.Google Scholar
Holtstam, D., Bindi, L., Karlsson, A., Söderhielm, J. and Zetterqvist, A. (2021) Muonionalustaite, Ni3(OH)4Cl2⋅4H2O, a new mineral formed by terrestrial weathering of the Muonionalusta iron (IVA) meteorite, Pajala, Norrbotten, Sweden. GFF, 143, 17.Google Scholar
Holtstam, D., Broman, C., Söderhielm, J. and Zetterqvist, A. (2003) First discovery of stishovite in an iron meteorite. Meteoritics & Planetary Science, 38, 15791583.Google Scholar
Holtstam, D. and Söderhielm, J. (2004) The Muonionalusta iron meteorites from Lapland, Sweden: New finds and findings. 5th International Conference “Mineralogy & Museums”, Paris. Bulletin de Liaison de la Société Française de Minéralogie et Cristallographie, 16, 47.Google Scholar
Ladenberger, A., Andersson, M., Gonzalez, J., Lax, K., Carlsson, M., Ohlsson, S.Å and Jelinek, C. (2012) Markgeokemiska kartan. Morängeokemi i norra Norrbotten. Sveriges geologiska undersökning, K410, 1112.Google Scholar
Lagerbäck, R. and Wickman, F.E. (1997) A new iron meteorite from Muonionalusta, northernmost Sweden. GFF, 119, 193198.Google Scholar
Li, S. and Hihara, L.H. (2015) A micro-Raman spectroscopic study of marine atmospheric corrosion of carbon steel: the effect of akaganeite. Journal of the Electrochemical Society, 162, C495.Google Scholar
Libowitzky, E. (1999) Correlation of OH stretching frequencies and OHO hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.Google Scholar
Mackay, A.L. (1962) β-Ferric oxyhydroxide – akaganeite. Mineralogical Magazine and Journal of the Mineralogical Society, 33, 270280.Google Scholar
Magyarosy, A., Laidlaw, R., Kilaas, R., Echer, C., Clark, D. and Keasling, J. (2002) Nickel accumulation and nickel oxalate precipitation by Aspergillus niger. Applied Microbiology and Biotechnology, 59, 382388.Google Scholar
Margheri, S., Bindi, L., Bonazzi, P. and Holtstam, D. (2022) Structural and spectroscopic study of well-developed crystals of parahibbingite, β-Fe2(OH)3Cl, formed from terrestrial weathering of the Muonionalusta iron meteorite. Mineralogical Magazine, 86, 891896.Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.Google Scholar
Murad, E. and Bishop, J.L. (2000) The infrared spectrum of synthetic akaganéite, β-FeOOH. American Mineralogist, 85, 716721.Google Scholar
Oh, S.J., Cook, D.C. and Townsend, H. E. (1998) Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine interactions, 112, 5966.Google Scholar
Peretyazhko, T.S., Ming, D.W., Rampe, E.B., Morris, R.V. and Agresti, D.G. (2018) Effect of solution pH and chloride concentration on akaganeite precipitation: Implications for akaganeite formation on Mars. Journal of Geophysical Research: Planets, 123, 22112222.Google Scholar
Peretyazhko, T.S., Pan, M.J., Ming, D.W., Rampe, E.B., Morris, R.V. and Agresti, D.G. (2019) Reaction of akaganeite with Mars-relevant anions. ACS Earth and Space Chemistry, 3, 314323.Google Scholar
Post, J.E. and Buchwald, V.F. (1991) Crystal structure refinement of akaganéite. American Mineralogist, 76, 272277.Google Scholar
Post, J.E., Heaney, P.J., von Dreele, R.B. and Hanson, J.C. (2003) Neutron and temperature-resolved synchrotron X-ray powder diffraction study of akaganéite. American Mineralogist, 88, 782788.Google Scholar
Post, J.E., von Dreele, R.B. and Buseck, P.R. (1982) Symmetry and cation displacements in hollandites: Structure refinements of hollandite, cryptomelane and priderite. Acta Crystallographica, B38, 10561065.Google Scholar
Rémazeilles, C. and Refait, P. (2007) On the formation of β-FeOOH (akaganéite) in chloride-containing environments. Corrosion Science, 49, 844857.Google Scholar
Rubin, A.E. and Ma, C. (2017) Meteoritic minerals and their origins. Geochemistry, 77, 325385.Google Scholar
Selwyn, L.S., Sirois, P.I. and Argyropoulos, V. (1999) The corrosion of excavated archaeological iron with details on weeping and akaganeite. Studies in Conservationi, 44, 217232.Google Scholar
Shebanova, O.N. and Lazor, P. (2003) Raman study of magnetite (Fe3O4): Laser-induced thermal effects and oxidation. Journal of Raman Spectroscopy, 34, 845852.Google Scholar
Sheldrick, G.M. (2015) Structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Simon, H., Cibin, G., Robbins, P., Day, S., Tang, C., Freestone, I. and Schofield, E. (2018) A synchrotron‐based study of the Mary Rose iron cannonballs. Angewandte Chemie, 130, 75127517.Google Scholar
Song, X. and Boily, J.F. (2012) Variable hydrogen bond strength in akaganéite. The Journal of Physical Chemistry C, 116, 23032312.Google Scholar
Ståhl, K., Nielsen, K., Jiang, J., Lebech, B., Hanson, J.C., Norby, P. and van Lanschot, J. (2003) On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts. Corrosion science, 45, 25632575.Google Scholar
Vehmaanperä, P., Sihvonen, T., Salmimies, R. and Häkkinen, A. (2022) Dissolution of magnetite and hematite in mixtures of oxalic and nitric acid: Mechanisms and kinetics. Minerals, 12, 560.Google Scholar
Vereshchagin, O.S., Britvin, S.N., Pankin, D.V., Zelenskaya, M.S., Krzhizhanovskaya, M.G., Kuz’mina, M.A., Vlasenko, N.S. and Frank-Kamenetskaya, O.V. (2025) Andreybulakhite, Ni(C2O4)·2H2O, the first natural nickel oxalate. European Journal of Mineralogy, 37, 6374.Google Scholar
Villalba, J.C., Berezoski, S., de Almeida Cavicchiolli, K., Galvani, V. and Anaissi, F.J. (2013) Structural refinement and morphology of synthetic akaganéite crystals, [β-FeO(OH)]. Materials Letters, 104, 1720.Google Scholar
Wickman, F.E. (1964) The Muonionalusta iron meteorites. Arkiv för mineralogi och geologi, 3, 467478.Google Scholar
Wilson, A.J.C. (1992) International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Amsterdam.Google Scholar
Yew, Y.P., Shameli, K., Miyake, M., Khairudin, N.B.B.A., Mohamad, S.E.B., Hara, H., Nordin, M.F.B.M. and Lee, K.X. (2017) An eco-friendly means of biosynthesis of superparamagnetic magnetite nanoparticles via marine polymer. IEEE Transactions on Nanotechnology, 16, 10471052.Google Scholar
Zelenskaya, M.S., Izatulina, A.R., Frank-Kamenetskaya, O.V. and Vlasov, D.Y. (2021) Iron oxalate humboldtine crystallization by fungus Aspergillus niger. Crystals, 11, 1591.Google Scholar
Supplementary material: File

Taddei et al. supplementary material 1

Taddei et al. supplementary material
Download Taddei et al. supplementary material 1(File)
File 74.3 KB
Supplementary material: File

Taddei et al. supplementary material 2

Taddei et al. supplementary material
Download Taddei et al. supplementary material 2(File)
File 37 KB