Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T04:22:57.341Z Has data issue: false hasContentIssue false

Electron petrography of high-temperature oxidation in olivine from the Rhum Layered Intrusion

Published online by Cambridge University Press:  05 July 2018

A. Putnis*
Affiliation:
Department of Mineralogy and Petrology, Downing PlaceCambridge CB2 3EW

Summary

Electron-microscope observations of the oxidation products of olivine suggest that oxidation results in the formation ofplatelets of an ‘oxidized olivine’ phase, which has a superstructure of the olivine structure. Subsequently this intermediate phase breaks down by a cellular decomposition process to a eutectoidal intergrowth of magnetite and pyroxene. This intergrowth is responsible for the dendritic magnetite inclusions commonly observed in some olivines from Rhum.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, (H. I.), Aaron, (H. B.), and Kinsman, (K. R.), 1971. Metallography. 4, 142.CrossRefGoogle Scholar
Bell, (P. M.), Mao, (H. K.), Roedder, (E.), and Weiblen, (P. W.), 1975. Proc. 6th Lunar Sci. Conf. 231-48.Google Scholar
Brown, (G. M.), 1956. Phil. Trans. R. Soc. Lond. B, 240, 1-53Google Scholar
Champness, (P. E.), 1968. Unpubl. Ph.D. thesis, University of Cambridge.Google Scholar
Champness, (P. E.) 1970. Mineral. Mag. 37, 790-800.CrossRefGoogle Scholar
Champness, (P. E.) and Gay, (P.), 1968. Nature, 218, 157-8.CrossRefGoogle Scholar
Copley, (P. A.) and Champness, (P. E.), 1976. In Wenk, (H. R.) (ed.), Electron microscopy in mineralogy. Springer-Verlag, Berlin.Google Scholar
Gay, (P.), Bown, (M. G.), and Muir, (I. D.), 1972. Proc. 3rd Lunar Sci. Conf. 1, 351-62.Google Scholar
Grimes, (N. W.), 1973. J. Phys., Ser. C, 6, L78-L79.Google Scholar
Haggerty, (S. E.) and Baker, (I.), 1967. Contrib. Mineral. Petrol. 16, 233-57.CrossRefGoogle Scholar
Harker, (A.) 1908. Mere. Geol. Surv. 80.Google Scholar
Harker, (A.) 1954. Petrology for students, 8th edn., Cambridge University Press.Google Scholar
Hatch, (F. H.), Wells, (A. K.), and Wells, (M. K.), 1972. Petrology of the igneous rocks,13th edn., Thomas Murby and Co. London.Google Scholar
Judd, (J. W.), 1885. Quart. J. Geol. Soc. Lond. 41, 354-418.CrossRefGoogle Scholar
Kohlstedt, (D. L.) and Vander Sande, (J. B.), 1975. Contrib. Mineral. Petrol. 53, 13-24.CrossRefGoogle Scholar
Muir, (I. D.) and Tilley, (C. E.), 1957. Am. J. Sci. 255, 241-53.CrossRefGoogle Scholar
Nitsan, (U.), 1974. J. Geophys. Res. 79, 706 11.CrossRefGoogle Scholar
Putnis, (A.), 1978. Phys. Chem. Minerals. 3, 183-97.CrossRefGoogle Scholar
Roedder, (E.) and Weiblen, (P. W.), 1971. Proc. 2nd Lunar Sci. Conf. 1, 507-28.Google Scholar
Tighe, (N. J.), 1976. In Wenk, (H. R.) (ed.), Electron microscopy in mineralogy. Springer-Verlag, Berlin.Google Scholar
Turnbull, (D.) and Tu, (K. N.), 1970. In Phase transformations. American Society for Metals.Google Scholar
Voll, (G. P. L. E.), 1972. NATO Adv. Study Instit. on Feldspars, 16-17.Google Scholar
Yund, (R. A.) and McCallister, (R. H.), 1970. Chem. Geol. 6, 5-31.CrossRefGoogle Scholar
Zeuch, (D. H.) and Green, (H. W.), 1977. Contrib. Mineral. Petrol. 62, 141–51.CrossRefGoogle Scholar