Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-09T23:04:49.615Z Has data issue: false hasContentIssue false

Coexisting sodic and calcic amphiboles from high-pressure metamorphic belts and the stability of barroisitic amphibole*

Published online by Cambridge University Press:  05 July 2018

W. G. Ernst*
Affiliation:
Department of Earth and Space Sciences, Institute of Geophysics and Planetary Physics, University of California, Los Angeles California 90024, USA

Summary

Compositions of glaucophanes and actinolite-hornblende solid solutions occurring in chemically similar metabasaltic rocks from blueschist terranes in east-central Shikoku, W. California, Valtournanche (W. Alps), and W. Liguria are compared. Chemical contrasts among coexisting Na and Ca amphibole pairs, which reflect disparate P-T histories under the presumed attendance of local equilibrium, include: Na contents are rather high among barroisitic hornblendes from the western and Ligurian Alps, as well as among high-grade tectonic blocks from California; in contrast, actinolitic amphiboles from both lower-grade Franciscan tectonic blocks and in situ schists and the blueschists of Shikoku are impoverished in Na relative to blue-green hornblendes. Sodic amphiboles contain less than 0. 5 Aliv per formula unit, whereas Alvi is very high; a situation reversed among calcic amphiboles. The Na + Ca contents ofglaucophanes are strongly clustered around the sum of 2.0 (i.e. A site vacant) whereas calcic amphiboles have a wider range with the A site variably occupied. No solvus has been detected within either sodic or calcic amphiboles under blueschist facies conditions. For low-grade metabasaltic parageneses, a miscibility gap separates these two amphibole groups; at relatively high grade such compositions have sodic calcic amphiboles of barroisitic type; this may mean that glaucophane + hornblende assemblages are metastable, accounting for textural relations indicating that the sodic amphibole typically did not grow at the same time as the barroisite. Ti, Mn, and K appear to be concentrated in calcic amphibole compared to coexisting glaucophane, probably in the M2, M4, and A sites, respectively.

Contrasts in coexisting amphibole tie lines are thought to be a consequence of the fact that the parageneses of Shikoku and California reflect high P and very high P prograde P-T paths respectively, whereas those from Valtournache and W. Liguria show evidence of decompression recrystallization (or back-reaction) of high P (i.e. eclogitic) protoliths. Comparison of the inferred physical conditions operating during the production of these four contrasting paragenetic sequences allows the provisional assignment of a P-T stability region for barroisitic amphibole in metabasaltic rocks as: P 4–5 kb at c. 350°; P 5–7 kb at c. 450 °C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, (J. M.) and Goldie, (R.), 1978. Coexisting amphiboles from the Noranda area, Quebec; extension of the actinolite-hornblende miscibility gap to iron-rich bulk compositions. Am. Mineral. 63, 205-9.Google Scholar
Banno, (S.), 1964. Petrologic studies on Sanbagawa crystalline schists in the Bessi-Ino district, central Sikoku, Japan. J. Fac. Sci. Univ. Tokyo, Sec. II, 15, 203-319.Google Scholar
Bearth, (P.), 1962. Versuch einer Gliederung alpinmeta-morpher Serien der Westalpen. Schweiz. Mineral. Petrogr. Mitt. 42, 127-37.Google Scholar
Bearth, (P.) 1966. Zur mineralfazellen Stellung der Glauko-phangesteine der Westalpen. Ibid. 46, 13-23.Google Scholar
Black, (P. M.), 1970. Coexisting glaucophane and riebeckite-arfvedsonite from New Caledonia. Am. Mineral. 55, 1061-4.Google Scholar
Black, (P. M.) 1973 Mineralogy of New Caledonian metamorphic rocks II. Amphiboles from the Ouegoa district. Contrib. Mineral. Petrol. 39, 55-64.10.1007/BF00374245CrossRefGoogle Scholar
Blake, (M. C.), Irwin, (W. P.), and Coleman, (R. G.), 1969. Blueschist-facies metamorphism related to regional thrust faulting. Tectonophysics. 8, 237-46.CrossRefGoogle Scholar
Bocquet, (J.), 1971. Cartes de répartition de quelques mineraux du metamorphisme alpin dans les Alpes franco-italiennes. Eclogae geol. Helv. 64, 71-103.Google Scholar
Brady, (J. B.), 1974. Coexisting actinolite and hornblende from west-central New Hampshire. Am. Mineral. 59, 529-35.Google Scholar
Brown, (E. H.), 1977. The crossite content of Ca-amphi-bole as a guide to pressure of metamorphism. J. Petrol. 18, 58-72.10.1093/petrology/18.1.53CrossRefGoogle Scholar
Burns, (R. G.) and Greaves, (C.), 1971. Correlations of infrared and Mossbauer site population measurements of actinolites. Am. Mineral. 56, 2010-33.Google Scholar
Burns, (R. G.) and Prentice, (F. J.), 1968. Distribution of iron cations in the crocidolite structure. Ibid. 53, 770-6.Google Scholar
Chesnokov, (B. V.), 1959. Rutile-bearing eclogites from the Shubin village deposit in the Southern Urals. Izv. Vyssh. Vchebn., Zaved. Geol. Razved. 4, 124-36.Google Scholar
Chiesa, (S.), Cortesogno, (L.), Forcella, (F.), Galli, (M.), Messiga, (B.), Pasquare, (G.), Pedemonte (G. M), Piccardo, (G. B.), and Rossi, (P. M.), 1975. Assetto strut-turale ed interpretazione geodinamica del Gruppo di Voltri. Boll. Soc. Geol. Italy. 94, 555-81.Google Scholar
Cimmino, (F.), Cortesogno, (L.), and Lucchetti, (G.), 1974. Un anfibolo fortemente ferrifero in rocce eclogitiche del complesso ofiolitifero del ‘Gruppo di Voltri’. Ann. Mus. Civ. Storia Nat. Genova. 80, 81-91.Google Scholar
Coleman, (R. G.) and Lanphere, (M. A.), 1971. Distribution and age of high-grade blueschists, associated eclogites, and amphibolites from Oregon and California. Geol. Soc. Am. Bull. 82, 2397-412.10.1130/0016-7606(1971)82[2397:DAAOHB]2.0.CO;2CrossRefGoogle Scholar
Coleman, (R. G.) and Lee, (D. E.), 1963. Glaucophane-bearing meta-morphic rock types of the Cazadero area, California. J. Petrol. 4, 260-301.CrossRefGoogle Scholar
Coleman, (R. G.) and Papike, (J. J.), 1968. Alkali amphiboles from the blueschists of Cazadero, California. Ibid. 9, 105-22.Google Scholar
Coleman, (R. G.) Lee, (D. E.), Beatty, (L. B.), and Brannock, (W. W.), 1965. Eclogites and eclogites: their differences and similarities. Geol. Soc. Am. Bull. 76, 483-508.CrossRefGoogle Scholar
Cooper, (A. F.), 1972. Progressive metamorphism of metabasic rocks of the Haast Schist Group of southern New Zealand. J. Petrol. 13, 457-92.CrossRefGoogle Scholar
Cooper, (A. F.) and Lovering, (J. F.), 1970. Greenschist amphiboles from Haast River, New Zealand. Contrib. Mineral. Petrol. 27, 11-24.10.1007/BF00539538CrossRefGoogle Scholar
Cortesogno, (L.), Gianelli, (G.), and Piccardo, (G. B.), 1975a. Preorogenic metamorphic and tectonic evolution of the ophiolite mafic rocks (Northern Apennine and Tuscany). Boll. Soc. Geol. Italy. 94, 291-327.Google Scholar
Cortesogno, (L.) Galli, (M.), Messiga, (B.), Pedemonte, (G. M.), and Piccardo, (G. B.), 1975b. Nota preliminare alla petro-grafia delle rocee eclogitiche del Gruppo di Voltri (Liguria Oceidentale). Ann. Mus. Civ. Storia Nat. Genova. 80, 325-43.Google Scholar
Cortesogno, (L.) Ernst, (W. G.), Galli, (M.), Messiga, (B.), Pedemonte, (G. M.), and Piccardo, (G. B.), 1977. Chemical petrology of eclogitic lenses in serpentinite, Gruppo di Voltri, Ligurian Alps. J. Geol. 85, 255-77.CrossRefGoogle Scholar
Dal Piaz, (G. V.), 1974a. Le metamorphisme de haute pression et basse température dans l'évolution struc-turale du bassin ophiolitique alpino-apenninique. I. Boll. Soc. Geol. Italy. 93, 1-31.Google Scholar
Dal Piaz, (G. V.) 1974b Le metamorphisme éoalpin de haute pression et basse temperature dans l'évolution structurale du bassin ophiolitique alpino-apenninique. II. Schweiz. Mineral. Petrogr. Mitt. 54, 399-424.Google Scholar
Dal Piaz, (G. V.) and Ernst, (W. G.), 1978. Areal geology and petrology of eclogites and associated metabasites of the Piemonte ophiolite nappe, Breuil-St. Jacques area, Italian western Alps. Tectonophysics, 48.Google Scholar
Dal Piaz, (G. V.) Devicchi, (Gp.), and Mezzacasa, (G.), in press. Geochemistry of ophiolite metavolcanics and metagabbros from the Ayas valley and Valtournanche, the Western Alps. Mere. Ist. Geol. Mineral., Univ. Padova.Google Scholar
Dal Piaz, (G. V.) Hunziker, (J. C.), and Martinotti, (G.), 1972. La zona Sesia-Lanzo e l'evoluzione tettonico-metamorfica delle Alpi nordoccidentali interne. Mem. Soc. Geol. Italy, 11, 433-60.Google Scholar
Dewey, (J. F.) and Bird, (J. M.), 1970. Mountain belts and the new global tectonics. J. Geophys. Res. 75, 2625-47.10.1029/JB075i014p02625CrossRefGoogle Scholar
Dobretsov, (N. L.), Kostyuk, (Y. A.), Lavrent'yev, (Y. G.), Ponomareva, (L. G.), Pospelova, (N. L.), and Sobolev, (V. S.), 1971. Immiscibility in the sodium-calcium amphibole series and its classification. Doklady Akad. Nauk SSSR, 199, 100-3.Google Scholar
England, (P. C.) and Richardson, (S. W.), 1977. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J. Geol. Soc. Lond. 134, 201-13.CrossRefGoogle Scholar
Ernst, (W. G.), 1964. Petrochemical study of coexisting minerals from low-grade schists, Eastern Shikoku, Japan. Geochim. Cosmochim. Acta. 28, 1631-68.CrossRefGoogle Scholar
Ernst, (W. G.) 1968. Amphiboles, crystal chemistry, phase relations and occurrence. New York, Springer-Vedag, Inc., 125 PP.Google Scholar
Ernst, (W. G.) 1970. Tectonic contact between the Franciscan mé1ange and the Great Valley sequence-crustal expression of a Late Mesozoic Benioff zone. J. Geophys. Res. 75, 886-901.10.1029/JB075i005p00886CrossRefGoogle Scholar
Ernst, (W. G.) 1971a. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contrib. Mineral. Petrol. 34, 4359.CrossRefGoogle Scholar
Ernst, (W. G.) 1971b. Petrologic reconnaissance of Franciscan metagraywackes from the Diablo Range, Central California Coast Ranges. J. Petrol. 12, 413-37.10.1093/petrology/12.2.413CrossRefGoogle Scholar
Ernst, (W. G.) 1972. Ca-amphibole paragenesis in the Shirtaki district, central Shikoku Japan. Geol. Soc. Am. Mere. 135, 7394.Google Scholar
Ernst, (W. G.) 1973a. Blueschist metamorphism and P-T regimes in active subduction zones. Tectonophysics. 17, 255-72.CrossRefGoogle Scholar
Ernst, (W. G.) 1973b. Interpretive synthesis of metamorphism in the Alps. Geol. Soc. Am. Bull. 84, 2053-78.2.0.CO;2>CrossRefGoogle Scholar
Ernst, (W. G.) (ed.), 1975. Subduction zone metamorphism. Strondsburg, Pennsylvania, Dowden, Hutchinson, and Ross, 445 PP.Google Scholar
Ernst, (W. G.) 1976. Mineral chemistry of edogites and related rocks from the Voltri Group, western Liguria, Italy. Schweiz. Mineral. Petrogr. Mitt. 56, 293-343.Google Scholar
Ernst, (W. G.) 1977. Mineral parageneses and plate tectonic settings of relatively high-pressure metamorphic belts. Fortschr. Mineral. 54, 192-222.Google Scholar
Ernst, (W. G.) and Dal Piaz, (G. V.), 1978. Mineral parageneses of eclogitic rocks and related mafic schists of the Pie-monte ophiolite nappe, Breuil-St Jacques area, Italian western Alps. Am. Mineral. 63, 621-40.Google Scholar
Ernst, (W. G.) and Seki, (Y.), 1967. Petrologic comparison of the Franciscan and Sanbagawa metamorphic terranes. Tectonophysics. 4, 463-78.10.1016/0040-1951(67)90011-XCrossRefGoogle Scholar
Ernst, (W. G.) Onuki, (H.), and Gilbert, (M. C.), 1970. Comparative study of low-grade metamorphism in the California Coast ranges and the Outer Metamorphic Belt of Japan. Geol. Soc. Am. Mere. 124.Google Scholar
Frey, (M.), Hunziker, (J. C.), Frank, (W.), Bocquet, (J.), Dal Piaz, (G. V.), Jäger, (E.), and Niggli, (E.), 1974. Alpine metamorphism of the Alps. Schweiz. Mineral. Petrogr. Mitt. 54, 248-90.Google Scholar
Ghent, (E. D.) and Coleman, (R. G.), 1973. Eclogites from southwestern Oregon. Geol. Soc. Am. Bull. 84, 2471-88.2.0.CO;2>CrossRefGoogle Scholar
Graham, (C. M.), 1974. Metabasite amphiboles of the Scottish Dalradian. Contrib. Mineral. Petrol. 47, 165-85.10.1007/BF00371537CrossRefGoogle Scholar
Grapes, (R. H.) and Graham, (C. M.), 1978. The actinolite-hornblende series in metabasites and the so-called miscibility gap: a review. Lithos, 11, 85-97.10.1016/0024-4937(78)90001-4CrossRefGoogle Scholar
Griggs, (D. T.), 1972. The sinking lithosphere and the focal mechanism of deep earthquakes. In Robertson, (E. C.), Hays, (J. F.), and Knopoff, (L.) (eds.), The nature of the solid earth, McGraw Hill, Inc., pp. 361-84.Google Scholar
Hasebe, (K.), Fujii, (N.), and Uyeda, (S.), 1970. Thermal processes under island arcs. Tectonophysics, 10,335-55.Google Scholar
Hermes, (O. D.), 1973. Paragenetic relationships in an amphibolitic tectonic block in the Franciscan terrain, Panoche Pass, California. J. Petrol. 14, 1-32.CrossRefGoogle Scholar
Himmelberg, (G. R.), and Papike, (J. J.), 1969. Coexisting amphiboles from blueschist facies metamorphic rocks. Ibid. 10, l02-14.Google Scholar
Huang, (W. T.), 1958. Riebeckite granite in the Wichita Mountains, Oklahoma. Geol. Soc. Am. Bull. 69, 1191-2.10.1130/0016-7606(1958)69[1191:RGITWM]2.0.CO;2CrossRefGoogle Scholar
Iwasaki, (M.), 1963. Metamorphic rocks of the Kotu-Bizan area, eastern Sikoku, J. Fac. Sci., Univ. Tokyo, Sec. 1I, 15, 1-90.Google Scholar
Klein, (C., Jr.), 1969. Two-amphibole assemblages in the system actinolite-hornblende-glaucophane. Am. Mineral. 54, 212-37.Google Scholar
Kurata, (H.) and Banno, (S.), 1974. Low-grade progressive metamorphism of pelitic schists of the Sazare area, Sanbagawa metamorphic terrain in central Sikoku, Japan. J. Petrol. 15, 361-82.10.1093/petrology/15.2.361CrossRefGoogle Scholar
Lee, (D. E.), Coleman, (R. G.), Bastron, (H.), and Smith, (V. C.), 1966. A two-amphibole glaucophane schist in the Franciscan Formation, Cazadero area, Sonoma County, California. US Geol. Surv. Prof. Pap. 550-C, 148-57.Google Scholar
Maresch, (W. V.), 1977. Experimental studies on glaucophane. An analysis of present knowledge. Tectono-physics. 43, 109-25.CrossRefGoogle Scholar
Messiga, (B.) and Piccardo, (G. B.), 1974. Rilevamento geo-petrografica e strutturale del Gruppo di Voltri. I1 settore nord-orientale: la zona fra M. Tacco e M. Orditano. Mem. Soc. Geol. Italy. 13, 301-15.Google Scholar
Miller, (C.), 1977. Chemismus und phasenpetrologische Untersuchungen der Gesteine aus Eklogitzone des Tauernfensters, Österreich. Tschermaks Mineral. Petrogr. Mitt. 24, 221-77.CrossRefGoogle Scholar
Misch, (P.), and Rice, (J. M.), 1975. Miscibility of tremolite and hornblende in progressive Skagit metamorphic suite, North Cascades, Washington. J. Petrol. 16, 1-21.10.1093/petrology/16.1.1CrossRefGoogle Scholar
Miyashiro, (A.), 1957. Chemistry, optics and genesis of the alkali-amphiboles. J. Fac. Sci., Univ. Tokyo, Sec. II, 11, 57-83.Google Scholar
Newton, (R. C.) and Fyfe, (W. S.), 1976. High pressure metamorphism. In Bailey, (D. K.) and Macdonald, (R.) (eds.), The evolution of the crystalline rocks, London, Academic Press, pp. l01-86.Google Scholar
Niggli, (E.), 1960. Mineral-Zonen der alpinen Metamorphose in den Schweizer Alpen. 21st Internat. Geol. Congr., Copenhagen, 13, 321-8.Google Scholar
Niggli, (E.) 1970. Alpine Metamorphose und alpine Gebirgsbil-dung. Fortschr. Mineral. 47, 16-26.Google Scholar
Niggli, (E.) -etal., 1973. Metamorphic map of the Alps. Sub-commission for the cartography of the Metamorphic Belts of the World, Leiden UNESCO, Paris, scale 1:1000 000.Google Scholar
Oxburgh, (E. R.) and Turcotte, (D. L.), 1970. Thermal structure of island arcs. Geol. Soc. Am. Bull. 81, 1665-88.CrossRefGoogle Scholar
Oxburgh, (E. R.) 1971. Origin of paired metamorphic belts and crustal dilation in island arc regions. J. Geophys. Res. 76, 1315-27.CrossRefGoogle Scholar
Papike, (J. J.), Cameron, (K. L.), and Baldwin, (K.), 1974. Amphiboles and pyroxenes: characterization of OTHER than quadrilateral components and estimates of ferric iron from microprobe data. Geol. Soc. Am. Abstr. Progr. 6, 1053-4.Google Scholar
Platt, (J. P.), 1975. Metamorphic and deformational processes in the Franciscan Complex, California: some insights from the Catalina Schist terrane. Geol. Soc. Am. Bull. 86, 1337-47.2.0.CO;2>CrossRefGoogle Scholar
Raith, (M.), Hörmann, (P. K.), and Abraham, (K.), 1977. Petrology and metamorphic evolution of the Penninic ophiolites in the western Tauern window (Austria). Schweiz. Mineral. Petrogr. Mitt. 57, 187-232.Google Scholar
Sampson, (G. A.) and Fawcett, (J. J.), 1977. Coexisting amphiboles from the Hastings region of southeastern Ontario. Can. Mineral. 15, 283-96.Google Scholar
Spear, (F. S.), 1976. Ca-amphibole composition as a function of temperature, fluid pressure, and oxygen fugacity in a basaltic system. Carnegie Inst. Washington Yearbook. 75, 775-9.Google Scholar
Stout, (J. H.), 1972. Phase petrology and mineral chemistry of existing amphiboles from Telemark, Norway. J. Petrol. 13, 99-145.CrossRefGoogle Scholar
Suppe, (J.), 1973. Geology of the Leech Lake Mountain-Ball Mountain region, California. Univ. Calif. Pubs. Geol. Sci. 107, 1-82.Google Scholar
Tagiri, (M.), 1977. Fe-Mg partition and miscibility gap between coexisting calcic amphiboles from the southern Abukuma Plateau, Japan. Contrib. Mineral. Petrol. 62, 271-81.10.1007/BF00371015CrossRefGoogle Scholar
Taylor, (H. P.) and Colemam, (R. G.), 1968. O18/O16 ratios of coexisting minerals in glaucophane-bearing metamorphic rocks. Geol. Soc. Am. Bull. 79, 1727-56.CrossRefGoogle Scholar
Toksöz, (M. N.), Minear, (J. W.), and Julian, (B. R.), 1971. Temperature field and geophysical effects of a down-go-ing slab. J. Geophys. Res. 76, 1113-38.10.1029/JB076i005p01113CrossRefGoogle Scholar
Toksöz, (M. N.) Sleep, (N. H.), and Smith, (A. T.) 1973. Evolution of the downgoing lithosphere and the mechanisms of deep focus earthquakes. Geophys. J. R. Astron. Soc. 35, 285-310.CrossRefGoogle Scholar
Turcotte, (D. L.) and Schubert, (G.), 1973. Frictional heating of the descending lithosphere. J. Geophys. Res. 78, 5876-96.Google Scholar