The composition and paragenesis of the hornblendes of the Glen Tilt complex, Perthshire
Published online by Cambridge University Press: 14 March 2018
Extract
The south-eastern margin of the Glen Tilt complex consists of a long strip of diorites with a number of small associated patches of rocks of appinitic type. Xenoliths, both of hornblendite and hornblendeschist, the latter belonging to the Perthshire series of the Dalradian, are found enclosed within the dioritic rocks, which range petrographically from diorite to quartz-mica-diorite. In all these rocks hornblende is the most important fcrromagnesian constituent always predominating over pyroxene in the basic members and frequently persisting to the exclusion of biotite in the intermediate rocks of the intrusion. The hornblendes were examined chemically because of the difficulty of estimating their composition even from a thorough optical investigation. As they play such an important role in the complex it is considered that they may give some indication of the history and mode of formation of the rocks in which they occur. Such a chemical investigation of a series of related hornblendes will also indicate the possible range of composition of common amphiboles within the diorites and related rocks of a single complex.
- Type
- Research Article
- Information
- Mineralogical magazine and journal of the Mineralogical Society , Volume 25 , Issue 161 , June 1938 , pp. 56 - 74
- Copyright
- Copyright © The Mineralogical Society of Great Britain and Ireland 1938
References
page 56 note 1 The geology of Upper Strathspey, Gaich and the Forest of Atholl. Mem. Geol. Surv. Scotland, Sheet 64, 1913.
page 58 note 1 Kunitz, W., Neues Jahrb. Min., Abt. A. 1930, Beil.-Bd. 60, p. 245. [M.A. 4–200.]Google Scholar
page 59 note 1 A. Brammall and J. G. C. Leech, read before Min. Soc., March 1936.
page 60 note 1 Daly, R. A., Igneous rocks and the depth of the earth. New York, 1935.Google Scholar
Average hornblendite: SiO2 42·80, TiO2 1·62, Al2O3 10·55, Fe2O3 6·62, FeO 9·16, MnO 0·24, MgO 12·48, CaO 11·67, Na2O 1·89, K2O 1·00, H20 1·73, p2O5 0·24.
page 60 note 2 The hornblende of some hornblendites is not primary but results from the alteration of pyroxene; e.g. the davainite at Garabal Hill ( Wyllie, B. K. N. and Scott, A., Geol. Mag., 1913, vol. 50, p. 503 Google Scholar).
page 64 note 1 Graham, W. A. P., Amer. Min., 1926, vol. ll, p. 121. [M.A. 3–294.]Google Scholar
page 65 note 1 SiO2 56·73% for the quartz-mica-diorite of the Glen Tilt complex. A description of the diorites and associated rocks of this complex will be published later.
page 65 note 2 Deer, W. A., Note on a pegmatitic hornblende from the Cairnsmore complex. Geol. Mag. London, 1937, vol. 74, pp. 359–361. [M.A. 7–25.]Google Scholar
page 66 note 1 Hurlbut, C.S., Amer. Min., 1935, vol. 20, p. 622. [M.A. 6–223.]Google Scholar
page 66 note 2 Schaller, W. T., Bull. U.S. Geol. Surv., 1916, no. 610, p. 136. [M.A. 1–258.]Google Scholar
page 66 note 3 Bowen, N. L. and Posnjak, E., Amer. Journ. sci., 1931, ser. 5, vol. 22, p. 201. [M.A. 5–103.]Google Scholar
page 66 note 4 Warren, B. E., Zeits. Krist., 1930, vol. 72, pp. 493–517. [M.A. 4–278.]Google Scholar
page 66 note 5 Warren, B. E., Zeits. Krist., 1929, vol. 72, p. 42. [M.A. 4–201]Google Scholar
page 66 note 6 Kunitz, W., Neues Jahrb. Min., Abt. A, 1930, Beil.-Bd. 60, pp. 200, 206. [M.A. 4 -200.]Google Scholar
page 66 note 7 Machatschki, F., Zeits. Krist., 1929, vol. 71, p. 222. [M.A. 4–202.]Google Scholar
page 69 note 1 Wiseman, J. D. W. Quart. Journ. Geol. Soc. London., 1934, vol. 90, pp. 368–369, 382–384 [M.A. 6–224.];Google Scholar Noekolds, S. R., Geol. Mag. London, 1935, vol. 72, p. 310; and othersGoogle Scholar
page 70 note 1 Doelter, c., Handbuch der Mineralchemie, 1914, vol. 2, pt. l, pp. 610–620 Google Scholar
page 71 note 1 Larsen, E. S., Irving, J., Gonyer, F. A., and Larsen, E. S. (3rd), Amer. Min., 1937, vol. 22, p. 898. [M.A. 7–31.]Google Scholar Three analyses of hornblendes from the Tertiary volcanic rocks of the San Juan region, Colorado, support this suggestion. The authors state that if Fe″ is replaced by Fe‴ some replacement, such as OH by O, must take place, a fact which is confirmed by the analyses, the formulae of which are given below:
-
1.
1. (OH,F)0·6 (Ca,Na)2·4 (Mg,Fe″,Fe‴,Mn,Ti,Al)5·25[(Si,Al)8 O22].
-
2.
2. (OH,F)1·2 (Ca,Na)2·4 (Mg,Fe″,Fe‴,Mn,Ti,Al)5·25[(Si,Al)8 O22].
-
3.
3. (OH)0·8 (Ca,Na)2·5 (Mg,Fe″,Fe‴,Mn,Ti,Al)5·4[(Si,Al)8 O22].
page 72 note 1 Berman, H. and Larsen, E. S., Amer. Min., 1931, vol. 16, p. 142. [M.A. 5–216.]Google Scholar
page 72 note 2 Kawano, Y., Proc. Imp. Acad. Tokyo, 1934, vol. 10. pp. 349–352. [M.A. 6–190.]Google Scholar
Analysis of basaltic hornblende:
SiO2; 38·30, TiO2 6·06, Al2O3 12·87, Fe2O3 7·98, FeO 6·96, MnO 0·12, MgO 11·79, CaO 10·47, Na2O 3·11, K2O 1·30, H2O+ 1·10, F 0·05, giving the formula: (OH,F)l·1 (Ca,Na,K)2·8 (Mg,Fe″,Fe‴,Mn,Ti)5·1 [(Si5·7 Al2·3)O22].
page 72 note 3 Billings, M., Amer. Min., 1928, vol. 13, p. 292. [M.A. 4–39.]Google Scholar
page 72 note 4 Marchet, A., Min. Petr. Mitt. (Tschermak), 1925, vol. 38, p. 494. [M.A. 3–82.]Google Scholar
page 72 note 5 Ford, W. E., Amer. Journ. Sci., 1914, ser. 4, vol. 37, p. 179.CrossRefGoogle Scholar
page 72 note 6 Barnes, V. E., Amer. Min., 1930, vol. 15, p. 393. [M,A. 4–391.]Google Scholar
page 73 note 1 Barnes, V. E., loc. cit., p. 413 Google Scholar; Graham, W. A. P., loc. cit., p. 122 Google Scholar; Belovsky, A., Neues Jahrb. Min., 1891, p: 291.Google Scholar
page 73 note 2 Rice, H. M. A., Amer. Min., 1935, vol. 20, p. 308. [M.A. 6–119.]Google Scholar
page 73 note 3 MacCarthy, G. R., Amer. Min., 1926, vol. ll, p. 321. [M.A. 4–251.]Google Scholar
page 74 note 1 Winchell, A. N., Amer. Journ. Sci., 1924, ser. 5, vol. 7, p. 303. [M.A. 2–304.]Google Scholar
page 74 note 2 S. R. Nockolds, personal communication.
- 8
- Cited by