Article contents
SARNAK’S SATURATION PROBLEM FOR COMPLETE INTERSECTIONS
Published online by Cambridge University Press: 24 August 2018
Abstract
We study almost prime solutions of systems of Diophantine equations in the Birch setting. Previous work shows that there exist integer solutions of size $B$ with each component having no prime divisors below $B^{1/u}$, where $u$ equals $c_{0}n^{3/2}$, $n$ is the number of variables and $c_{0}$ is a constant depending on the degree and the number of equations. We improve the polynomial growth $n^{3/2}$ to the logarithmic $(\log n)(\log \log n)^{-1}$. Our main new ingredients are the generalization of the Brüdern–Fouvry vector sieve in any dimension and the incorporation of smooth weights into the Davenport–Birch version of the circle method.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2018
References
- 3
- Cited by