Published online by Cambridge University Press: 28 May 2014
We study the metric entropy of the metric space ${\mathcal{B}}_{n}$ of all $n$-dimensional Banach spaces (the so-called Banach–Mazur compactum) equipped with the Banach–Mazur (multiplicative) “distance” $d$. We are interested either in estimates independent of the dimension or in asymptotic estimates when the dimension tends to $\infty$. For instance, we prove that, if $N({\mathcal{B}}_{n},d,1+{\it\varepsilon})$ is the smallest number of “balls” of “radius” $1+{\it\varepsilon}$ that cover ${\mathcal{B}}_{n}$, then for any ${\it\varepsilon}>0$ we have