Article contents
Nonlinear interaction of near-planar TS waves and longitudinal vortices in boundary-layer transition
Published online by Cambridge University Press: 26 February 2010
Abstract
The nonlinear interactions that evolve between a planar or nearly planar Tollmien-Schlichting (TS) wave and the associated longitudinal vortices are considered theoretically, for a boundary layer at high Reynolds numbers. The vortex flow is either induced by the TS nonlinear forcing or is input upstream, and similarly for the nonlinear wave development. Three major kinds of nonlinear spatial evolution, Types I-III, are found. Each can start from secondary instability and then becomes nonlinear, Type I proving to be relatively benign but able to act as a pre-cursor to the Types II, III which turn out to be very powerful nonlinear interactions. Type II involves faster streamwise dependence and leads to a finite-distance blow-up in the amplitudes, which then triggers the full nonlinear three-dimensional triple-deck response, thus entirely altering the mean-flow profile locally. In contrast, Type III involves slower streamwise dependence but a faster spanwise response, with a small TS amplitude thereby causing an enhanced vortex effect which, again, is substantial enough to entirely alter the mean-flow profile, on a more global scale. Concentrated spanwise formations in which there is localized focussing of streamwise vorticity and/or wave amplitude can appear, and certain of the nonlinear features also suggest by-pass processes for transition and significant change in the flow structure downstream. The powerful nonlinear 3D interactions II, III seem potentially very relevant to experimental and computational findings in fully fledged transition; in particular, it is suggested in an appendix that the Type-Ill interaction can terminate in a form of 3D boundary-layer separation which appears possibly connected with the formation of lambda vortices in practice.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1989
References
- 27
- Cited by