Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T22:30:59.286Z Has data issue: false hasContentIssue false

Equilibrium decompositions of 4-manifolds and abstract regular 5-polytopes

Published online by Cambridge University Press:  26 February 2010

Wolfgang Kühnel
Affiliation:
Mathematisches Institut B, Universität Stuttgart, 70550 Stuttgart, Germany.
Get access

Abstract

Decompositions of simply connected 4-manifolds into three closed 4-balls are studied from the view-point of abstract regular polytopes of Schläfli type {p, q, 2, 3}. The three balls correspond to three ditopes, their common intersection corresponds to a regular map of type {p, q} as an equilibrium surface whose genus equals the “genus” of the 4-manifold.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

BK.Banchoff, T. F. and Künnel, W.. Equilibrium triangulations of the complex projective plane. Geom. Dedicata, 44 (1992), 313333.Google Scholar
Br.Brehm, U.. Maximally symmetric polyhedral realizations of Dyck's regular map. Muthematika, 34 (1987), 229236.CrossRefGoogle Scholar
BKS.Brehm, U., Kühnel, W. and Schulte, E.. Manifold structures on abstract regular polytopes. Aequationes Math., 49 (1995), 1235.CrossRefGoogle Scholar
CH.Cavicchioli, A. and Hegenbarth, F.. Manifolds of type C(p, q). Kobe J. Math., 7 (1990), 139145.Google Scholar
Cox.Coxeter, H. S. M.. Regular Polytopes, 3rd ed. (Dover, New York, 1973).Google Scholar
CoxM.Coxeter, H. S. M. and Moser, W. O. J.. Generators and Relations for Discrete groups, 4th ed. (Springer, Berlin-Heidelberg-New York, 1980).CrossRefGoogle Scholar
CoxS.Coxeter, H. S. M. and Shephard, G. C.. Regular 3-complexes with toroidal cells. J. Combin. Th. (B), 22 (1977), 131138.Google Scholar
Da.Davis, M. W.. Regular convex cell complexes. Geometry and Topology, Proc. Conf. Athens, Georgia 1985, (McCrory, C. and Shifrin, Th., eds.) In Lecture Notes Pure Appl. Math., 105 (M. Dekker, New York—Basel, 1987), pp. 5388.Google Scholar
Dy.Dyck, W.. Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemannscher Flächen. Math. Ann., 17 (1880), 473510.Google Scholar
FT.Tóth, L. Fejes. Reguläre Figuren (Akadémiai Kiadó, Budapest, 1965).Google Scholar
Ki.Kirby, R.. The Topology of 4-Manifolds. In Lecture Notes in Mathematics, 1374 (Springer, Berlin Heidelberg-New York, 1989).Google Scholar
KT.Kobayashi, K. and Tsukui, Y.. The ball coverings of manifolds. J. Math. Soc. Japan, 28 (1976), 133143.CrossRefGoogle Scholar
Kü.Kühnel, W.. Tight Polyhedral Submanifolds and Tight Triangulations. In Lecture Notes in Mathematics, 1612 (Springer, Berlin-Heidelberg-New York, 1995).Google Scholar
MMS1.McMullen, P. and Schulte, E.. Locally toroidal regular polytopes of rank 4. Comment. Math. Helvetici, 67 (1992), 77118.CrossRefGoogle Scholar
MMS2.McMullen, P. and Schulte, E.. Abstract Regular Polytopes. Monograph, in preparation.Google Scholar
RS.Rourke, C. P. and Sanderson, B. J.. Introduction to Piecewise-Linear Topology (Springer, Berlin-Heidelberg-New York, 1972).Google Scholar
Sch.Schulte, E.. Classification of locally toroidal regular polytopes. Polytopes: Abstract, Convex and Computational (Bisztriczky, T.et al., eds). In NATO Adv. Study Inst. Ser. C, Math. Phys. Sci., 440, (Kluwer, Dordrecht, 1994), pp. 125154.Google Scholar