No CrossRef data available.
Article contents
Equilibrium decompositions of 4-manifolds and abstract regular 5-polytopes
Part of:
Polytopes and polyhedra
Published online by Cambridge University Press: 26 February 2010
Abstract
Decompositions of simply connected 4-manifolds into three closed 4-balls are studied from the view-point of abstract regular polytopes of Schläfli type {p, q, 2, 3}. The three balls correspond to three ditopes, their common intersection corresponds to a regular map of type {p, q} as an equilibrium surface whose genus equals the “genus” of the 4-manifold.
MSC classification
Secondary:
52B70: Polyhedral manifolds
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1997
References
BK.Banchoff, T. F. and Künnel, W.. Equilibrium triangulations of the complex projective plane. Geom. Dedicata, 44 (1992), 313–333.Google Scholar
Br.Brehm, U.. Maximally symmetric polyhedral realizations of Dyck's regular map. Muthematika, 34 (1987), 229–236.CrossRefGoogle Scholar
BKS.Brehm, U., Kühnel, W. and Schulte, E.. Manifold structures on abstract regular polytopes. Aequationes Math., 49 (1995), 12–35.CrossRefGoogle Scholar
CH.Cavicchioli, A. and Hegenbarth, F.. Manifolds of type C(p, q). Kobe J. Math., 7 (1990), 139–145.Google Scholar
CoxM.Coxeter, H. S. M. and Moser, W. O. J.. Generators and Relations for Discrete groups, 4th ed. (Springer, Berlin-Heidelberg-New York, 1980).CrossRefGoogle Scholar
CoxS.Coxeter, H. S. M. and Shephard, G. C.. Regular 3-complexes with toroidal cells. J. Combin. Th. (B), 22 (1977), 131–138.Google Scholar
Da.Davis, M. W.. Regular convex cell complexes. Geometry and Topology, Proc. Conf. Athens, Georgia 1985, (McCrory, C. and Shifrin, Th., eds.) In Lecture Notes Pure Appl. Math., 105 (M. Dekker, New York—Basel, 1987), pp. 53–88.Google Scholar
Dy.Dyck, W.. Über Aufstellung und Untersuchung von Gruppe und Irrationalität regulärer Riemannscher Flächen. Math. Ann., 17 (1880), 473–510.Google Scholar
Ki.Kirby, R.. The Topology of 4-Manifolds. In Lecture Notes in Mathematics, 1374 (Springer, Berlin Heidelberg-New York, 1989).Google Scholar
KT.Kobayashi, K. and Tsukui, Y.. The ball coverings of manifolds. J. Math. Soc. Japan, 28 (1976), 133–143.CrossRefGoogle Scholar
Kü.Kühnel, W.. Tight Polyhedral Submanifolds and Tight Triangulations. In Lecture Notes in Mathematics, 1612 (Springer, Berlin-Heidelberg-New York, 1995).Google Scholar
MMS1.McMullen, P. and Schulte, E.. Locally toroidal regular polytopes of rank 4. Comment. Math. Helvetici, 67 (1992), 77–118.CrossRefGoogle Scholar
MMS2.McMullen, P. and Schulte, E.. Abstract Regular Polytopes. Monograph, in preparation.Google Scholar
RS.Rourke, C. P. and Sanderson, B. J.. Introduction to Piecewise-Linear Topology (Springer, Berlin-Heidelberg-New York, 1972).Google Scholar
Sch.Schulte, E.. Classification of locally toroidal regular polytopes. Polytopes: Abstract, Convex and Computational (Bisztriczky, T.et al., eds). In NATO Adv. Study Inst. Ser. C, Math. Phys. Sci., 440, (Kluwer, Dordrecht, 1994), pp. 125–154.Google Scholar