Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T13:02:17.806Z Has data issue: false hasContentIssue false

ZERO-ONE LAWS IN SIMULTANEOUS AND MULTIPLICATIVE DIOPHANTINE APPROXIMATION

Published online by Cambridge University Press:  21 January 2013

Liangpan Li*
Affiliation:
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, U.K. (email: [email protected])
Get access

Abstract

Answering two questions of Beresnevich and Velani, we develop zero-one laws in both simultaneous and multiplicative Diophantine approximation. Our proofs mainly rely on a versatile Cassels–Gallagher type theorem and the cross fibering principle of Beresnevich, Haynes and Velani.

Type
Research Article
Copyright
Copyright © 2013 University College London 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Badziahin, D., Inhomogeneous Diophantine approximation on curves and Hausdorff dimension. Adv. Math. 223 (2010), 329351.CrossRefGoogle Scholar
[2]Badziahin, D., Beresnevich, V. and Velani, S., Inhomogeneous theory of dual Diophantine approximation on manifolds. Adv. Math. 232 (2013), 135.CrossRefGoogle Scholar
[3]Beresnevich, V., Bernik, V., Dodson, M. and Velani, S., Classical metric Diophantine approximation revisited. In Analytic Number Theory Essays in Honour of Klaus Roth, (eds Chen, W. W. L.et al), Cambridge University Press (Cambridge, 2009), 3861.Google Scholar
[4]Beresnevich, V., Haynes, A. and Velani, S., Multiplicative zero-one laws and metric number theory. Acta Arith. (accepted), arXiv:1012.0675.Google Scholar
[5]Beresnevich, V. V., Vaughan, R. C. and Velani, S. L., Inhomogeneous Diophantine approximation on planar curves. Math. Ann. 349 (2011), 929942.CrossRefGoogle Scholar
[6]Beresnevich, V. and Velani, S., A note on zero-one laws in metrical Diophantine approximation. Acta Arith. 133 (2008), 363374.CrossRefGoogle Scholar
[7]Beresnevich, V. and Velani, S., Classical metric Diophantine approximation revisited: the Khintchine–Groshev theorem. Int. Math. Res. Not. 2010 (2010), 6989.Google Scholar
[8]Beresnevich, V. and Velani, S., An inhomogeneous transference principle and Diophantine approximation. Proc. Lond. Math. Soc. 101 (2010), 821851.CrossRefGoogle Scholar
[9]Cassels, J. W.  S., Some metrical theorems in Diophantine approximation. I. Proc. Cambridge Philos. Soc. 46 (1950), 209218.CrossRefGoogle Scholar
[10]Duffin, R. J. and Schaeffer, A. C., Khintchine’s problem in metric Diophantine approximation. Duke Math. J. 8 (1941), 243255.CrossRefGoogle Scholar
[11]Gallagher, P., Approximation by reduced fractions. J. Math. Soc. Japan 13 (1961), 342345.CrossRefGoogle Scholar
[12]Gallagher, P., Metric simultaneous Diophantine approximation. J. London Math. Soc. 37 (1962), 387390.CrossRefGoogle Scholar
[13]Gallagher, P. X., Metric simultaneous Diophantine approximation (II). Mathematika 12 (1965), 123127.CrossRefGoogle Scholar
[14]Harman, G., Metric Number Theory, Clarendon Press (Oxford, 1998).CrossRefGoogle Scholar
[15]Haynes, A. K., Pollington, A. D. and Velani, S. L., The Duffin–Schaeffer conjecture with extra divergence. Math. Ann. 353 (2012), 259273.CrossRefGoogle Scholar
[16]Pollington, A. D. and Vaughan, R. C., The $k$-dimensional Duffin and Schaeffer conjecture. Mathematika 37 (1990), 190200.CrossRefGoogle Scholar
[17]Roth, K. F., Rational approximations to algebraic numbers. Mathematika 2 (1955), 120.CrossRefGoogle Scholar
[18]Schmidt, W. M., A metrical theorem in Diophantine approximation. Canad. J. Math. 12 (1960), 619631.CrossRefGoogle Scholar
[19]Sprindz̆uk, V., Metric Theory of Diophantine Approximation, John Wiley & Sons (New York, 1979), (English translation).Google Scholar
[20]Vilchinski, V. T., On simultaneous approximations by irreducible fractions. Vestsi Akad. Navuk BSSR Ser. Fiz.-Mat. Navuk 140 (1981), 4147 (in Russian).Google Scholar
[21]Vaaler, J. D., On the metric theory of Diophantine approximation. Pacific J. Math. 76 (1978), 527539.CrossRefGoogle Scholar