No CrossRef data available.
Article contents
LONELY RUNNERS IN FUNCTION FIELDS
Part of:
Diophantine approximation, transcendental number theory
Extremal combinatorics
Probabilistic theory: distribution modulo $1$; metric theory of algorithms
Designs and configurations
Published online by Cambridge University Press: 12 April 2019
Abstract
The lonely runner conjecture, now over fifty years old, concerns the following problem. On a unit-length circular track, consider $m$ runners starting at the same time and place, each runner having a different constant speed. The conjecture asserts that each runner is lonely at some point in time, meaning at a distance at least $1/m$ from the others. We formulate a function field analogue, and give a positive answer in some cases in the new setting.
MSC classification
Primary:
11J71: Distribution modulo one
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2019
References
Alon, N., The chromatic number of random Cayley graphs. European J. Combin.
34
2013, 1232–1243.Google Scholar
Alon, N. and Spencer, J., The Probabilistic Method, 3rd edn., John Wiley & Sons (Hoboken, NJ, 2008).Google Scholar
Barajas, J. and Serra, O., The lonely runner with seven runners. Electron. J. Combin.
15
2008, R48.Google Scholar
Betke, U. and Wills, J. M., Untere Schranken für zwei diophantische Approximations-Funktionen. Monatsh. Math.
76
1972, 214–217.Google Scholar
Biennia, W., Goddyn, L., Gvozdjak, P., Sebő, A. and Tarsi, M., Flows, view obstructions and the lonely runner. J. Combin. Theory Ser. B
72
1998, 1–9.Google Scholar
Bohman, T., Holzman, R. and Kleitman, D., Six lonely runners. Electron. J. Combin.
8(2) 2001, R3.Google Scholar
Chen, Y. G., View-obstruction problems in n-dimensional Euclidean space and a generalization of them. Acta Math. Sinica
37
1994, 551–562.Google Scholar
Chen, Y. G. and Cusick, T. W., The view-obstruction problems for n-dimensional cubes. J. Number Theory
74
1999, 126–133.Google Scholar
Cusick, T. W., View-obstruction problems in n-dimensional geometry. J. Combin. Theory Ser. A
16
1974, 1–11.Google Scholar
Cusick, T. W. and Pomerance, C., View-obstruction problems III. J. Number Theory
19
1984, 131–139.Google Scholar
Czerwiński, S., Random runners are very lonely. J. Combin. Theory Ser. A
119
2012, 1194–1199.Google Scholar
Czerwiński, S. and Grytczuk, J., Invisible runners in finite fields. Inform. Process. Lett.
108
2008, 64–67.Google Scholar
Dubickas, A., The lonely runner problem for many runners. Glas. Mat. Ser. III
46(66) 2011, 25–30.Google Scholar
Ellenberg, J. S., Venkatesh, A. and Westerland, C., Homological stability for Hurwitz spaces and the Cohen–Lenstra conjecture over function fields. Ann. of Math. (2)
183
2016, 729–786.Google Scholar
Entin, A., On the Bateman–Horn conjecture for polynomials over large finite fields. Compos. Math.
152
2016, 2525–2544.Google Scholar
Etzion, T. and Raviv, N., Equidistant codes in the Grassmannian. Discrete Appl. Math.
186
2015, 87–97.Google Scholar
Ganguly, A. and Ghosh, A., Dirichlet’s theorem in function fields. Canad. J. Math.
69
2017, 532–547.Google Scholar
Hegedüs, G., An improved upper bound for the size of a sunflower-free family. Acta Math. Hungar.
155
2018, 431–438.Google Scholar
Jukna, S., Extremal Combinatorics. With Applications in Computer Science
(Texts in Theoretical Computer Science, an EATCS series), 2nd edn., Springer (Heidelberg, 2011).Google Scholar
Katz, N. and Sarnak, P., Random Matrices, Frobenius Eigenvalues and Monodromy
(AMS Colloquium Publications 45
), AMS (Providence, RI, 1999).Google Scholar
Katz, N. and Sarnak, P., Zeros of zeta functions and symmetries. Bull. Amer. Math. Soc.
36
1999, 1–26.Google Scholar
Liu, Y.-R. and Wooley, T. D., Waring’s problem in function fields. J. Reine Angew. Math.
638
2010, 1–67.Google Scholar
Naslund, E. and Sawin, W. F., Upper bounds for sunflower-free sets. Forum Math. Sigma
5
2017, e15.Google Scholar
Perarnau, G. and Serra, O., Correlation among runners and some results on the lonely runner conjecture. Electron. J. Comb.
23
2016, P1.50.Google Scholar
Rauhut, H., Romberg, J. and Tropp, J. A., Restricted isometries for partial random circulant matrices. Appl. Comput. Harmon. Anal.
32
2012, 242–254.Google Scholar
Renault, J., View-obstruction: a shorter proof for 6 lonely runners. Discrete Math.
287
2004, 93–101.Google Scholar
Tao, T., Some remarks on the lonely runner conjecture. Contrib. Discrete Math.
13(2) 2018, 1–31.Google Scholar
van der Geer, G., Moonen, B. and Schoof, R. (eds), Number fields and function fields—two parallel worlds
(Progress in Mathematics 239
), Birkhäuser (Boston, 2005).Google Scholar
Vaughan, R. C., The Hardy–Littlewood Method
(Cambridge Tracts in Mathematics 125
), 2nd edn., Cambridge University Press (Cambridge, 1997).Google Scholar
Weber, H. and Dedekind, R., Theorie der algebraischen Functionen einer Veränderlichen. J. Reine Angew. Math.
92
1882, 181–290.Google Scholar
Weil, A., On the Riemann hypothesis in function-fields. Proc. Nat. Acad. Sci. USA
27
1941, 345–347.Google Scholar
Wills, J. M., Zwei Säzte über inhomogene diophantische Approximation von Irrationalzahlen. Monatsh. Math.
71
1967, 263–269.Google Scholar
Yin, W., Morgan, S., Yang, J. and Zhang, Y., Practical compressive sensing with Toeplitz and circulant matrices. In Visual Communications and Image Processing 2010
(Proc. SPIE 7744
), SPIE (Bellingham, WA, 2010).Google Scholar