The stability of the self-exciting disk dynamo is considered. If there is no electrical load in parallel with the field coil and no friction at the axle, the dynamo can perform oscillations of constant amplitude about its state of steady motion. Viscous forces on the axle cause the dynamo to settle to a steady motion. A parallel load may have an effect similar to that of viscous forces or may cause the oscillations to grow without limit. With both a parallel load and viscous forces the amplitude of the oscillations is bounded.
Possible analogies between these results and the motion of a body of electrically conducting fluid in a magnetic field are discussed. The main applications are astronomical and geophysical.