Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-28T14:28:42.644Z Has data issue: false hasContentIssue false

Vanishing sums in function fields

Published online by Cambridge University Press:  24 October 2008

W. D. Brownawell
Affiliation:
Department of Mathematics, Pennsylvania State University, State College, PA 16802, U.S.A.
D. W. Masser
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A.

Extract

Let k be a field of zero characteristic, and let F be a function field over k of genus g. We normalize each valuation v on F so that its order group consists of all rational integers, and for elements u1, …, un of F, not all zero, we define the (projective) height as

The sum formula on F shows that this is really a height on the projective space .

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Cartan, H.. Sur les zéros de combinaisons linéaires de p fonctions holomorphes données. Mathematica Cluj 7 (1933), 529;Google Scholar
Collected Works, vol. 1 (ed. Remmert, R. and Serre, J.-P.) (Springer-Verlag, 1979), 421445.Google Scholar
[2]Hayman, W. K.. Waring's Problem für analytische Funktionen. Bayerische Akademie der Wissenschaften, Math.-Nat. Klasse no. 1 (1984).Google Scholar
[3]Mason, R. C.. Diophantine Equations over Function Fields. London Math. Soc. Lecture Notes, vol. 96 (Cambridge University Press, 1984).CrossRefGoogle Scholar
[4]Mason, R. C.. Norm form equations. I. J. Number Theory 22 (1986), 190207 (see also similar titles II, III, IV, V).CrossRefGoogle Scholar
[5]Muir, T. and Metzler, W. H.. A Treatise on the Theory of Determinants (Dover, 1960).Google Scholar
[6]Silverman, J. H.. The S-unit equation over function fields. Math. Proc. Cambridge Philos. Soc. 95 (1984), 34.CrossRefGoogle Scholar