Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T14:52:33.506Z Has data issue: false hasContentIssue false

Uniqueness of bridge surfaces for 2-bridge knots

Published online by Cambridge University Press:  01 May 2008

MARTIN SCHARLEMANN*
Affiliation:
Mathematics Department, University of California Santa Barbara, Santa Barbara, CA 93117, U.S.A. email: [email protected]
MAGGY TOMOVA
Affiliation:
Mathematics Department, Rice University, 6100 S. Main St., Houston TX 77005-1892, U.S.A. email: [email protected]
*
Partially supported by a National Science Foundation grant.

Abstract

Any 2-bridge knot in S3 has a bridge sphere from which any other bridge surface can be obtained by stabilization, meridional stabilization, perturbation and proper isotopy.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[BoO]Bonahon, F. and Otal, J. P.. Scindements de Heegaard des espaces lenticulaires. Ann. Sci. École. Norm. Sup. 16 (1983), 451466.CrossRefGoogle Scholar
[BZ]Boileau, M. and Zieschang, H.. Heegaard genus of closed orientable Seifert 3-manifolds. Invent. Math. 76 (1984), 455468.CrossRefGoogle Scholar
[CG]Casson, A. and Gordon, C. McA.. Reducing Heegaard splittings. Topology Appl. 27 (1987), 275283.CrossRefGoogle Scholar
[GST]Goda, H., Scharlemann, M. and Thompson, A.. Levelling an unknotting tunnel. Geom. Topol. 4 (2000), 243275.CrossRefGoogle Scholar
[HT]Hatcher, A. and Thurston, W.. Incompressible surfaces in 2-bridge knot complements. Invent. Math. 79 (1985), 225246.CrossRefGoogle Scholar
[HS2]Hayashi, C. and Shimokawa, K.. Heegaard splittings of trivial arcs in compression bodies. J. Knot Theory Ramifications 10 (2001), 7187.CrossRefGoogle Scholar
[Ko1]Kobayashi, T.. Classification of unknotting tunnels for two bridge knots. In Proceedings of the Kirbyfest Geometry and Topology Monographs 2 (1999), 259290.CrossRefGoogle Scholar
[Ko2]Kobayashi, T.. Heegaard splittings of exteriors of two bridge knots. Geom. Topol. 5 (2001), 609650.CrossRefGoogle Scholar
[MS]Moriah, Y. and Schultens, J.. Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or horizontal. Topology 37 (1998), 10891112.CrossRefGoogle Scholar
[OS]Ozsv, P. and Szab, Z.. An introduction to Heegaard Floer homology. Floer homology, gauge theory, and low-dimensional topology. Clay Math. Proc. 5 (2006), 327.Google Scholar
[Ot1]Otal, J.-P.. Presentations en ponts du nœud trivial. C. R. Acad. Sci. Paris Sr. I Math. 294 (1982), 553556.Google Scholar
[Ot2]Otal, J.-P.. Presentations en ponts des nœud rationnels. Low-dimensional topology London. Math. Soc. Lecture Note Ser. 95 (1985), 143160.Google Scholar
[RS1]Rubinstein, H. and Scharlemann, M.. Comparing Heegaard splittings of non-Haken 3-manifolds. Topology 35 (1997), 10051026.CrossRefGoogle Scholar
[RS2]Rubinstein, H. and Scharlemann, M.. Comparing Heegaard splittings of non-Haken 3-manifolds – the bounded case. Trans. Amer. Math. Soc. 350 (1998), 689715.CrossRefGoogle Scholar
[STo]Scharlemann, M. and Tomova, M.. Conway products and links with multiple bridge surfaces. ArXiv preprint math.GT/0608435.Google Scholar
[To]Tomova, M.. Thin position for knots in a 3-manifold. ArXiv preprint math.GT/0609674.Google Scholar
[Wa]Waldhausen, F.. Heegaard-Zerlegungen der 3-Sphäre. Topology 7 (1968), 195203.CrossRefGoogle Scholar
[Wi]Witten, E.. Topological quantum field theory. Comm. Math. Phys. 117 (1988), 353386.CrossRefGoogle Scholar