Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T07:41:57.638Z Has data issue: false hasContentIssue false

Uniform bounds for the number of solutions to Yn = f(X)

Published online by Cambridge University Press:  24 October 2008

J.-H. Evertse
Affiliation:
Centre of Mathematics and Computer Science, 1009 AB Amsterdam, The Netherlands
J. H. Silverman
Affiliation:
Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.

Extract

Let K be an algebraic number field and f(X) ∈ K[X]. The Diophantine problem of describing the solutions to equations of the form

has attracted considerable interest over the past 60 years. Siegel [12], [13] was the first to show that under suitable non-degeneracy conditions, the equation (+) has only finitely many integral solutions in K. LeVeque[7] proved the following, more explicit, result. Let

where aK* and αl,…,αk are distinct and algebraic over K. Then (+) has only finitely many integral solutions unless (nl,…,nk) is a permutation of one of the n-tuples

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Baker, A.. Transcendental Number Theory (Cambridge University Press, 1975).CrossRefGoogle Scholar
[2] Brindza, B.. On S-integral solutions of the equation y m = f(x). Acta Math. Hung. 44 (1984), 133139.Google Scholar
[3] Evertse, J.-H.. Upper Bounds for the Number of Solutions of Diophantine Equations, MC-tract 168, Centre of Math, and Comp. Sci. (Amsterdam, 1983).Google Scholar
[4] Evertse, J.-H.. On equations in S-units and the Thue–Mahler equation. Invent. Math. 75 (1984), 561584.CrossRefGoogle Scholar
[5] Faltings, G.. Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73 (1983), 349366.CrossRefGoogle Scholar
[6] Kani, E.. Bounds on the number of non-rational subfields of a function field. Pre-print.Google Scholar
[7] LeVeque, W. J.. On the equation yn = f(x). Acta Arith. 9 (1964), 209219.CrossRefGoogle Scholar
[8] Mason, R. C.. Diophantine Equations over Function Fields. London Math. Soc. Lecture Note Series, vol. 96 (Cambridge University Press, 1984).CrossRefGoogle Scholar
[9] Schinzel, A. and Tijdeman, R.. On the equation ym = P(x). Acta Arith. 31 (1976), 199204.CrossRefGoogle Scholar
[10] Schmidt, W.. Thue's equation over function fields. J. Austral. Math. Soc. (A) 25 (1978), 385422.CrossRefGoogle Scholar
[11] Shorey, T. N., van der Poorten, A. J., Tijdeman, R. and Schinzel, A.. Applications of the Gel'fond-Baker method to Diophantine equations. In Transcendence Theory, Advances and Applications, proc. conf. Cambridge 1976 (ed. Baker, A. and Masser, D. W.), pp. 5977.Google Scholar
[12] Siegel, C. L. (under the pseudonym X). The integer solutions of the equation y2 = axn + bx n-1 + … + h, Gesammelte Abhandlungen, vol. I (Springer-Verlag, 1966), 207208.CrossRefGoogle Scholar
[13] Siegel, C. L.. Über einige Anwendungen diophantischer Approximationen (1929), Oesammelte Abhandlungen, vol. I (Springer-Verlag, 1966), 209266.Google Scholar
[14] Silverman, J. H.. The Catalan equation over function fields. Trans. Amer. Math. Soc. 273 (1982), 201205.CrossRefGoogle Scholar
[15] Silverman, J. H.. The S-unit equation over function fields. Math. Proc. Cambridge Philos. Soc. 95 (1984), 34.CrossRefGoogle Scholar
[16] Sprindzuk, V. G.. On the number of solutions of the Diophantine equation X3 = y2 + A (in Russian). Dokl. Akad. Nauk. BSSR 7 (1963), 911.Google Scholar
[17] Trelina, L. A.. On S-integral solutions of the hyperelliptic equation (in Russian). Dokl. Akad. Nauk. BSSR (1978), 881884.Google Scholar