Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T08:56:24.929Z Has data issue: false hasContentIssue false

Two singular integral equations involving confluent hypergeometric functions

Published online by Cambridge University Press:  24 October 2008

Tilak Raj Prabhakar
Affiliation:
Ramjas College, University of Delhi

Extract

Widder(1) obtained an inversion of the convolution transform

by the method of the Laplace transform, Ln(x) being the Laguerre polynomial. Buschman (2) inverted a similar transform with a generalized Laguerre polynomial as kernel and also solved (3) the singular integral equation

using Mikusinski operators. Srivastava(4, 4a) solved singular integral equations with kernels involving and Whittaker functions Mk(x).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Widder, D. V.The inversion of a convolution transform whose kernel is a Laguerre polynomial. Amer. Math. Monthly 70 (1963), 291293.CrossRefGoogle Scholar
2Buschman, R. G.Convolution equations with generalized Laguerre polynomial kernels. Notices Amer. Math. Soc. 10 (4) (1963), 374.Google Scholar
3Buschman, R. G.Convolution equations with generalized Laguerre polynomial kernels. SIAM Rev. 6 (1964), 166–67.CrossRefGoogle Scholar
4Srivastava, K. N.A class of integral equations involving Laguerre polynomials as kernel. Proc. Edinburgh Math. Soc. 15 (1966), 3336.CrossRefGoogle Scholar
(4a)Srivastava, K. N.On integral equations involving Whittaker's function. Proc. Glasgow Math. Assoc. 7 (1966), 125127.CrossRefGoogle Scholar
5Jet, Wimp. Two integral transform pairs involving hypergeometric functions. Proc. Glasgow Math. Assoc. 7 (1965), 42–33.Google Scholar
6Erdélyi, A.An integral equation involving Legendre functions. J. Soc. Indust. Appl. Math. 12 (1964), 1530.CrossRefGoogle Scholar
7Love, E. R.Some integral equations involving hypergeometric functions. Proc. Edinburgh Math. Soc. 15 (1967), 169198.CrossRefGoogle Scholar
8Erdélyi, A. et al. Higher transcendental functions, vol. I (McGraw-Hill; New York, 1953).Google Scholar
9Kober, H.On fractional integrals and derivatives. Quart. J. Math. Oxford Ser. 11 (1940), 193211.CrossRefGoogle Scholar
10Slater, L. J.Confluent hypergeometric functions (Cambridge, 1960), p. 6.Google Scholar
11Mikhlin, S. G.Linear integral equations (translated from Russian). (Hindustan Publishing Corporation; Delhi, 1960), p. 29.Google Scholar
12Erdélyi, A. et al. Higher transcendental functions, vol. II (McGraw-Hill; New York, 1953).Google Scholar