Totally knotted knots are prime
Published online by Cambridge University Press: 24 October 2008
Extract
Throughout, the word knot means a subspace of the 3-sphere S3 homeomorphic with the 1-sphere S1. Any knot can be expressed as a connected sum of a finite number of prime knots in a unique way (13), we consider the trivial knot a non-prime knot. (For higher dimensional knots, factorization and uniqueness have been studied in (1).) However given a knot it is difficult to determine if it is prime or not. We prove that totally knotted knots, see definition in §2, are prime in theorem 1, give a class of examples in theorem 2 and investigate how the last result can be applied to the conjecture that the family Y of unknotting number one knots are prime. (See problem 2 in (5).) At the end, prime tangles as defined by W. B. R. Lickerish are used to prove that in a certain family of knots, related somewhat to Y, there is just one non-prime knot: the square knot. The paper should be interpreted as being in the piecewise linear category. Standard definitions of 3-manifolds and knot theory may be found in (6) and (11) respectively.
- Type
- Research Article
- Information
- Mathematical Proceedings of the Cambridge Philosophical Society , Volume 91 , Issue 3 , May 1982 , pp. 467 - 472
- Copyright
- Copyright © Cambridge Philosophical Society 1982
References
REFERENCES
- 1
- Cited by