Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T10:23:48.787Z Has data issue: false hasContentIssue false

Surface waves in rotating liquids

Published online by Cambridge University Press:  24 October 2008

V. Subba Rao
Affiliation:
Department of Mathematics, Indian Institute of Technology, Madras-36, India

Abstract

Using a technique developed by Lighthill, surface waves are studied when a concentrated pressure point oscillating with a constant frequency moves along OX in a rotating frame O X Y Z on the free surface of rotating liquid bounded below by a horizontal plane. The effect of rotation is to split the coincident gravity modes of the non-rotating case and further to produce a new system of wavelets (countably infinite) which do not have any counterpart in the non-rotating case.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1969

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

(1)Taylor, G. I.Proc. Roy. Soc. Ser. A 102 (1922), 180189.Google Scholar
(2)Gortler, H. Z.Z. Angew. Math. Mech. 24 (1944), 210214.CrossRefGoogle Scholar
(3)Morgan, G. W.Proc. Roy. Soc. Ser. A 206 (1951), 108130.Google Scholar
(4)Oser, H.Z. Angew. Math. Mech. 38 (1958), 386391.CrossRefGoogle Scholar
(5)Reynolds, A. J.Appl. Math. Phys. XIII (1962), 460468.Google Scholar
(6)Nigam, S. D. and Nigam, P. D.Proc. Roy. Soc. Ser. A 266 (1962), 247256.Google Scholar
(7)Long, R. R.J. Met. 10 (1953), 197203.2.0.CO;2>CrossRefGoogle Scholar
(8)Miles, J. W.Phys. Fluids 2 (1959), 297305.CrossRefGoogle Scholar
(9)Skalak, R. and Conly, J. F.American Institute of Aeronautics and Astronautics Jl. 2 (1964), 306312.CrossRefGoogle Scholar
(10)Lighthill, M. J.Trans. Roy. Soc. Ser. A 252 (1960), 397430.Google Scholar
(11)Miles, J. W.J. Fluid Mech. 18 (1964), 187194.CrossRefGoogle Scholar
(12)Lighthill, M. J.Fourier analysis and generalized functions (Cambridge University Press, 1962).Google Scholar
(13)Crapper, G. D.Proc. Roy. Soc. Ser. A 282 (1964), 547558.Google Scholar