No CrossRef data available.
Published online by Cambridge University Press: 24 October 2008
Recently Kauffman[2, 3] has classified the (strongly) spin-preserving solutions of the Yang—Baxter equation, and in particular discussed two solutions. One of these can be used to obtain the Jones polynomial, while the other (with care) leads to the Alexander polynomial. In this paper we shall complete this analysis, and shall describe all strongly spin-preserving invertible solutions of the Yang-Baxter equation which lead to link invariants. Having done this, we investigate what sort of link invariants can be obtained from these solutions. It turns out that these invariants are precisely those which have been described in Hennings [l].